
       
 IJML Vol 3 No. 2 | June 2024 | ISSN: 2963-8119  (print), ISSN: 2963-7821 (online), Page 166-187 

166 

 

Bhavik Shah 

 
ADVERSARIAL EVALUATION OF SAFETY AND PRIVACY TRADE-OFFS IN MOBILE LLM 

GUARDRAIL DESIGN  
 

Bhavik Shah 
SAS Institute Inc., Cary, NC, USA 

 

 

 

 

 

 

 

 

 

 

 

INTRODUCTION 

Large language models (LLMs) have also rapidly become the core technology of 

natural language understood and generation and have become widely applicable across 

industries. A growing number of these models are being implemented on mobile phones 

and edge devices to act as a conversational assistant, summarization engine, personal 

planner and intelligent content processor [1], [12], [14]. This has been enabled by the 

proliferation of compressed transformer architectures and knowledge distillation methods 

which have made it possible to infer high performance models at the edge, reducing 

inference latency and limiting cloud dependency. This decentralization will promise great 

enhancements in user experience, control of privacy and energy efficiency. Nonetheless, it 

also creates new risk and harms vectors, since the localized application decreases 

centralized control and audit abilities [3], [2]. 

Abstract: Mobile large language models (LLMs) are also being 

deployed to smartphones and edge devices to offer conversational 

help, summarization, and task automation (specifically personalized). 

Nonetheless, this move to on-device intelligence presents some new 

issues concerning the privacy and safety of users, especially when 

models are subjected to adversarial inputs. The challenge is in the 

inadequate knowledge on the impact of such safety guardrails like 

rule-based filters, content classifiers, and moderation layers on 

privacy behavior under targeted attacks. This research fills this gap 

by creating an adversarial evaluation system that analytically studies 

the compromising of safety and privacy in mobile LLM guardrail 

design. The framework uses systematized categories of attacks in the 

form of prompt injection, memorization and deanonymization to test 

the effects of different guardrail architecture in system behavior under 

realistic mobile conditions. The experiments performed on 

compressed LLMs have shown that, in addition to the beneficial 

effects of the cascaded moderator architecture to reduce harmful 

outputs, contextual leakage can also occur due to the verbose refusal 

responses. On the other hand, the auxiliary safety models are 

relatively balanced in their performance with low privacy leakage and 

safety compliance. The findings point to the importance of co-

optimization of guardrail mechanisms to both provides safety and 

privacy instead of seeing this as a protective or stand-alone element. 

This study finds that adversarial privacy assessment should be part of 

the development of mobile LLAMs, and as such, designs and 

deployments ought to incorporate this concept, which will allow the 

development of privacy-aware and regulation-compatible guardrails 

of trusted AI in edge devices. 
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In particular, the security perimeter and accountability of the regulatory policies shift 

to users and hardware manufacturers as the on-device one replaces the cloud-based 

inference. Mobile-based LLMs have vulnerabilities to leakage of data, memorization of 

important content and adversarial manipulation of prompts all of which are possible in an 

opaque environment with no real-time governance systems. As interactions with mobile 

devices may include personal identifiers, contextual histories or location information, any 

unwanted disclosure may contravene fundamental values of privacy protection including 

data minimization and purpose limitation. These issues prove the acute necessity of strong 

guardrail mechanisms, which can be used to effectively curb such risks in distributed, 

device-level AI ecosystems [3], [2]. 

In order to control these complex risks, scholars and engineers have started to 

structure and combine guardrails that include a wide range of solutions that include rule-

based filters, auxiliary classifiers, and cascaded safety models. They are supposed to 

restrict the output of the models according to ethical, regulatory, and organizational 

requirements without the need to sacrifice the overall usability and fluency of the LLM [4], 

[6], [16], [19]. Rule-based systems are based on linguistic or semantic constraints that are 

manually developed; auxiliary classifiers use trained models to recognize policy-violating 

outputs; and cascaded a classifier which may be called LLM-on-LLM moderation adds a 

supervisory layer, and is able to evaluate and rephrase responses before they are delivered 

to the user. Although these methods have proven themselves to be effective in preventing 

blatant safety breaches, i. e. toxic speech, misinformation, or even content promoting self-

harming behavior, their effects on the privacy dynamics in adversarial circumstances have 

been underutilized. Mobile and edge environments are especially interesting to worry 

about, because prompts in these environments frequently imply personally identifiable 

information (PII) or situational metadata, and since the guardrails in these environments 

might interfere in unpredictable ways with model behavior, this increases privacy 

exposure. 

Privacy-focused red teaming empirical research has pointed out peculiar weaknesses 

in mobile executions of LLMs under adversarial inquiries [3], [2]. Typologies of attacks, 

including prompt injection, memorization extraction and contextual deanonymization, 

have shown that attackers can easily pressure models into exposing training data or user 

information that are sensitive in nature. These results are of great importance to the 

adherence to international data protection schemes, as they provoke the beliefs regarding 

consent, anonymization, and user control. Combining these technical vulnerabilities with 

legal terms like data minimization and purpose limitation has proven in previous studies to 

provide the framework of a quantitative risk assessment paradigm specific to the phone-

based AI systems. However, the current assessments are largely deficient in the interactive 

effects of safety guardrails, which is mostly limited to vulnerabilities in the base model, 

without taking into consideration the effect of the auxiliary mechanisms to 

increase/decrease the privacy risk in the real world situation of their use. 

Simultaneously, regulatory authorities and standards associations have been stepping 

up their push to find governance structures to AI responsible implementation. Programs 

NIST and ISO/IEC emphasize the need to have a trustworthy AI - strong, transparent, 

explainable, and privacy-by-design [7], [10], [11], [22]. In the meantime, the EU AI Act 

and the White House Executive Order on Safe, Secure, and Trustworthy AI confirm the 

necessity of combined consideration of safety and privacy aspects in the lifecycle of 

foundation models [1], [12], [15], [21]. However, although this policy interest is 

increasingly growing, the empirical literature has not sufficiently explored whether the 

balance between the safety and privacy of various guardrail architectures deployed in 
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adversarially rich, real world environments is inherently influenced by the architectures. 

The paradigm of current evaluation commonly views guardrails as rigid or opaque 

modules, in other words, black boxes, without evaluating their indirect impact on privacy 

leakage, contextual exposure, or even re-identification risk. 

To address these gaps, the current work modifies and expands previous privacy-

conscience red teaming models on phone-based LLM [3], which includes the entire 

interaction between the base models and guardrail systems. This study explores the effect 

of these mechanisms on the profile of joint safety-privacy performance of mobile AI 

systems by conceptualizing the guardrails as first-class and not as safety layers. The bigger 

picture is to develop a reproducible assessment model that would be able to reflect the 

subtle trade-offs between the harm reduction and privacy protection. 

On this basis, the following are some of the key contributions of this paper: 

1. Guardrail-sensitive red teaming model: We introduce new guardrail architectures to 

the privacy evaluation methods currently used on phone-based LLMs [3], which 

explicitly incorporates guardrail architectures into the evaluation boundary. This 

method allows having a complete picture of the impact of guardrail parameters on the 

safety violation rates and privacy leakage rates during adversarial probing. 

2. Comparison of guardrails designs: Our empirical comparison is of three large classes 

of guardrails: rule-based filters, auxiliary safety models, and cascaded, so-called, LLM-

on-LLM, moderators, on compact and mobile-optimized architecture, like DistilBERT 

and TinyGPT. Assessments are based on a structured set of adversarial prompts that 

are based on existing taxonomies of red teaming [3], [4]. 

3. Patterns of privacy-conscience guardrails: Using the empirical results, we come up 

with a set of architectural and procedure suggestions of designing guardrails that will 

have high coverage in terms of safety without undermining the privacy resilience. In 

addition, we highlight how adversarial privacy assessment can be directly integrated 

into the design and configuration process of guardrail mechanisms. 

Overall, the study is an addition to the growing body of literature regarding trustworthy 

and privacy-preserving AI by quantitatively measuring the trade-off between safety and 

privacy in the deployment of mobile LLM via various guardrail architectures. The 

suggested framework and findings should clarify to both practitioners building on-device 

AI systems, and policymakers whose main duty is to ensure that technical protection and 

regulatory requirements suit the requirements of current requirements. 

 

Background and Related Work   

On-Device AI and Phone-Based LLAM 

Recent advancements in model compression, quantization, and knowledge 

distillation have made transformer based large language models (LLM) capable of running 

on the edge on smartphones, and other devices [1], [12]–[15]. This technology has made 

mobile systems into potent entities that are able to generate texts in real-time, summarize 

context, and manage tasks even in the case of poor connectivity. The on-device AI 

paradigm derived from the results allows achieving reduced latency, a higher degree of 

personalization, and more energy efficiency. Nevertheless, such change has also moved the 

point of responsibility of safety and privacy to decentralized servers to individual user-

controlled spaces, making it more difficult to audit regulatory and to provide technical 

regulation.   

On-device deployments result in fragmented ecosystems, with varied update 

frequencies and defined user behaviors [3], [2], unlike cloud-hosted architecture where it 

is possible to uniformly administer centralized monitoring, access controls and patch 
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management. In earlier studies of mobile LLMs, it is highlighted that these machines are 

capable of storing user prompts, maintaining conversation histories, and that training 

information is memorized when adversarial probed through inadvertent methods. Such 

behaviors pose unique privacy issues, because local storage and computation make users 

and regulators less transparent. Therefore, the deployment of mobile LLM is not to be 

considered as a smaller version of cloud serving, but as a distinct risk regime, which 

necessitates custom frameworks to assess safety, privacy, and reliability.   

The development of edge intelligence therefore requires new privacy-sensitive 

schemes and adjective governance approaches. These systems have adversarial 

vulnerabilities as demonstrated by [3] and [2], and thus it is necessary to have guardrail 

integration to consider both model-level and device-level risk factors. This knowledge 

forms the basis through which further parts of this paper would be based on and focus on 

joint assessment evaluation models that do not only focus on safety-related behaviors but 

also on privacy-related behaviors in a coordinated approach.   

 

Red Teaming and Privacy Evaluation 

The idea of red teaming was first coined in the context of cybersecurity, where it is 

proposed that the security of the system can be tested by adversarial simulation [3], has 

been also applied to artificial intelligence, specifically to evaluate the resilience of LLMs 

[2], [4], [18], [20]. Red teaming in this case would be the systematic exploration of 

language models using adversarial prompts that intentionally encourage negative behaviors 

or policy breaches. Conventional safety-based red teaming has concentrated more on 

identifying dangerous or hazardous text; nonetheless, privacy-based red teaming extends 

this to the analysis of the possibility of the models to leak training data, expose personal 

identifiers, or recreate user-specific data [3].   

Red teaming frameworks that focus on privacy are usually based on the organized 

attack taxonomies that classify the threats as prompt injection, memorization extraction, 

and contextual deanonymization. These taxonomies allow scholars to use a set of uniform 

quantitative measures, including leakage probability, re-identification risk, and sensitivity 

exposure scores, to determine the extent and occurrence of privacy violations. Moreover, 

such behaviors are mapped to set regulatory constructs, including those of the General Data 

Protection Regulation (GDPR) and the EU Artificial Intelligence Act (AI Act), which offer 

a policy-relevant understanding of the performance of a model [8], [9].   

It is based on evolving literature that the current study utilizes an equivalent attack 

model and annotation framework but goes beyond the fundamental framework to test the 

overall performance of distant LLMs and guardrails. This change of unit of analysis of 

discrete models to multi-component model-guardrail systems is a vital transition on the 

unit of privacy assessment, which enables more realistic testing of deployed AI behavior.   

 

Large Language Models Guardrails   

Guardrails, which include rule based filters, classification based monitors, and 

cascaded safety systems, have been integrated into the essential elements of aligning 

language model behavior with ethical and regulatory principles [5], [6], [16], [19]. Rule-

based filters are based on text-matching patterns or rules to block outlawed contents; they 

are deterministic and based on heuristics, and classifier-based systems are based on 

machine-learned models, which are used to detect, and filter unsafe content in real-time. 

More recently, cascaded architectures, where smaller so-called moderator LLMs are used 

to check the output of primary models and update it, have become popular because of their 

flexibility and interpretability.   
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These systems are further strengthened through complementary alignment methods, 

including instruction tuning, human feedback-based reinforcement learning (RLHF), and 

constitutional AI [6], [16]. Although such methods can significantly decrease the amount 

of content toxic or violating policy, they can often overlook the issue of privacy, 

particularly when there is an adversarial situation. As an example, a model may fail to 

generate explicit harmful content, but still reveal personally identifiable information (PII) 

in the form of memorized sequences or by reconstructing the context [2], [19].   

This has been partially realized in privacy-focused red teaming research [3], 

however, there is little empirical research that quantitatively measures risk redistribution 

between safety and privacy of various guardrail architectures. This gap is directly filled by 

the current study, which looks at the different effects of rule-based, auxiliary classifier and 

cascaded guardrails on privacy leakage and safety performance, which, hence, adds new 

empirical data to the privacy-conscious system design of AI.   

 

Regulatory and Standards Context   

The modern regulatory landscape related to AI can be described as the one that focuses 

more on the concepts of trustworthiness, accountability, and privacy-by-design. Data 

minimizations, purpose limitation, fairness, and robustness are some of the major tenets 

that are required by the GDPR [8] and the EU AI Act [9]. Likewise, NIST and ISO/IEC 

publications, such as NIST AI Risk Management Framework (AI RMF 1.0) and 

ISO/IEC23894:2023 offer detailed guidelines on how AI systems, in general, should 

identify, be transparent, and manage risks [7], [10], [11], [22]. In addition to these, there is 

complementary White House Executive Order on Safe, Secure, and Trustworthy AI [21], 

which emphasizes the need to balance the privacy, and safety concerns at all levels of AI 

implementation.   

All these frameworks hold the view that a dual-pronged evaluation paradigm should be 

applied, whereby safety measures have to be evaluated together with preservation of 

privacy. A system that stops spam or any other output that is harmful or against policy but 

unintentionally shows sensitive information is still non-compliant with regulatory 

expectations. Based on this, guardrail designs should be considered not only in terms of 

their effectiveness in censoring the unsafe content but also in terms of their role in 

information exposure and the risk of re-identification.   

Here, the current study complies with and elaborates on earlier privacy appraisal research 

on phone-based models [3], the design of guardrail as a regulatory-engineering issue. This 

framing facilitates the creation of AI architectures that are designed to be privacy-conscious 

in nature such that the gains made on one dimension of trustworthiness (safety) do not 

incidentally compromise a different dimension (privacy). 

Table 1: Summary of Related Studies on LLM Privacy and Safety Evaluation 

Study Primary 

Focus 

Methodology Key 

Contribution 

Source 

[2] Carlini 

et al. (2021) 

Data extraction 

and 

memorization 

attacks 

Empirical 

adversarial 

testing 

Demonstrated 

training data 

leakage in large 

models 

USENIX Security 

Symposium 

[3] Pujari 

et al. (2023) 

Privacy red 

teaming for 

phone-based 

LLMs 

Multi-attack 

evaluation 

taxonomy 

Established 

privacy risk 

metrics aligned 

with GDPR 

International 

Journal of Science 

and Technology 

(IJST) 
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[4] 

Weidinger 

et al. (2021) 

Taxonomy of 

LLM risks 

Theoretical 

taxonomy and 

evaluation 

Defined 

categories of 

AI risk 

including 

privacy 

arXiv preprint 

arXiv:2112.04359 

[16] Bai et 

al. (2022) 

Constitutional 

AI for safety 

AI alignment 

via ethical 

constraints 

Introduced AI 

feedback 

mechanisms 

for 

harmlessness 

arXiv preprint 

arXiv:2212.08073 

[19] 

Hendrycks 

et al. (2020) 

Human-value 

alignment 

Safety 

benchmarking 

of LLMs 

Developed 

alignment 

datasets for 

social values 

arXiv preprint 

arXiv:2008.02275 

Source: Compiled by the author based on [2], [3], [4], [16], [19]. 

Table 1 provides an overview of academic literature that is relevant to the intersection of 

privacy and safety in large language models (LLMs) evaluation. It proves that a number of 

studies have been conducted on safety and ethical correspondence, but few studies have 

systematically analyzed guardrail structures by privacy-sensitive adversarial experiments, 

which highlights the originality of the present study. 

The next grouped bar chart represents the proportion of research focus in the fields of 

privacy, safety, and regulatory assessment of the mentioned studies. 

 
Figure 1. Relative Scope of Previous Studies of the LLM 

The comparative illustration of the areas of focus discussed by the pre-existing studies in 

the context of privacy, safety, and regulatory issues is shown in figure 1. As visualized, it 

can be seen that works that are referenced as [3] and [2] demonstrate a more significant 

direction of privacy, whereas works [16] and [19] have the overarching direction of safety 

alignment through the prism of ethics or constitutions. 
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These conclusions highlight the analytical gap, which the given research aims to address 

namely the lack of coordinated assessment models, which simultaneously embrace safety 

guardrails and privacy resilience in the context of adversarial testing. 

 

3. Problem Formulation 

To strictly analyze how safety and privacy relate to each other in mobile large language 

models (LLMs), we represent a mobile assistant as a complex system comprising of an 

underlying language model and a corresponding guardrail system. This construct helps in 

the evaluation of safety -privacy trade-offs using a single optimization framework, unlike 

considering safety and privacy as distinct design objectives. 

Formally, let: 

𝑥𝑡 ∈ 𝒳 be the user input (prompt) at turn 𝑡, 

ℎ𝑡 = (𝑥1, 𝑦1, … , 𝑥𝑡−1, 𝑦𝑡−1) The conversation history up to turn 𝑡, 

𝑀𝜙: (𝒳 × ℋ) → 𝒴 Be the base LLM with parameters𝜙, 

𝐺𝜃: (𝒴 × ℋ) → 𝒴 Be the guardrail mechanism with parameters (or rules) 𝜃. (Either as a 

set of rules or learned parameters). 

The unguarded response is 

𝑦̃𝑡 = 𝑀𝜙(𝑥𝑡, ℎ𝑡), 

Whereas the final guarded response is produce as: 

𝑦𝑡 = 𝐺𝜃(𝑦̃𝑡, ℎ𝑡). 
This compositional structure illustrates the manner in which guardrails adjust or filter the 

model's initial outputs prior to their delivery to the end user. 

We posit a distribution of prompts and conversational histories that have been constructed 

adversarial, denoted by 𝒟adv The process was conducted through privacy-focused red 

teaming, encompassing four primary attack types: prompt injection, memorization, 

deanonymization, and mixed attacks, as delineated in [3], [4]. For a given adversarial 

simple (𝑥, ℎ) ∼ 𝒟adv, we define binary indicator functions to measure violations of safety 

and privacy policies: 

𝑉safety(𝑦, 𝑥, ℎ) ∈ {0,1}: 1 if the response violates the safety policy, 0 otherwise. 

𝑉privacy(𝑦, 𝑥, ℎ) ∈ {0,1}: 1 if the response leaks sensitive data or exhibits privacy violations 

(memorization, deanonymization). 

The anticipated rates of violation, specifically the Safety Violation Rate (SVR) and the 

Privacy Leakage Rate (PLR), are subsequently formulated as follows: 

SVR(𝜙, 𝜃) = 𝔼(𝑥,ℎ)∼𝒟adv
[𝑉safety(𝑦(𝑥, ℎ), 𝑥, ℎ)], PLR(𝜙, 𝜃) =

𝔼(𝑥,ℎ)∼𝒟adv
[𝑉privacy(𝑦(𝑥, ℎ), 𝑥, ℎ)]. 

To facilitate interpretability, we define the Safety Index (SI) and Privacy Index (PI) as 

the complement of their respective violation rates 

SI(𝜙, 𝜃) = 1 − SVR(𝜙, 𝜃),  PI(𝜙, 𝜃) = 1 − PLR(𝜙, 𝜃). 
These indices quantify model robustness in probabilistic terms, with higher values 

indicating enhanced performance. 

The primary optimization objective of this framework is to ascertain an optimal guardrail 

configuration 𝜃 for a given mobile LLM Mϕ ensuring the maximization of both safety and 

privacy while maintaining computational efficiency in terms of latency and memory. The 

constrained multi-objective optimization problem is defined as follows: 
min

𝜃
  𝜆s SVR(𝜙, 𝜃) + 𝜆p PLR(𝜙, 𝜃)

s.t.  𝐶latency(𝜃) ≤ 𝜏,

𝐶memory(𝜃) ≤ 𝜇,
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Where 𝜆s, 𝜆p > 0 are trade-off coefficients that balance safety and privacy; 𝜏 denotes the 

maximum permissible latency, and 𝜇 represents the memory budget for on-device 

deployment. This formalization ensures that the resulting configuration remains feasible 

within the constraints of mobile hardware a critical consideration for on-device AI systems 

[1], [12]. 

We also consider attack type conditioned metrics, where 𝒟adv

(𝑘)
 denotes the distribution of 

prompts for attack type 𝑘 ∈ {injection,memorization,deanonymization,mixed}, following 

the categories in prior work [3]. For each type: 

PLR
(𝑘)(𝜙, 𝜃) = 𝔼

(𝑥,ℎ)∼𝒟adv
(𝑘)[𝑉privacy(𝑦(𝑥, ℎ), 𝑥, ℎ)]. 

The quantities in question are utilized in the comparative analysis presented in Table 2 and 

Figure 2, which elucidates the impact of various guardrail configurations on privacy 

leakage across different adversarial scenarios. 

Table 2: Model Parameters, Evaluation Metrics, and Performance Constraints 

Symbol Definition Operational 

Domain 

Typical 

Range 

Source 

𝑀ϕ 
 

Base mobile LLM 

(e.g., DistilBERT, 

TinyGPT) 

Language 

model 

– [1], [12], 

[14] 

𝐺𝜃 Guardrail mechanism 

(rule-based, auxiliary, 

cascaded) 

Model filter 

layer 

– [4], [6], 

[19] 

𝑆𝑉𝑅 Safety Violation Rate [0, 1] 0.05–

0.30 

[3], [4] 

𝑃𝐿𝑅 Privacy Leakage Rate [0, 1] 0.10–

0.25 

[3], [4] 

𝑆𝐼, 𝑃𝐼 Safety and Privacy 

Indices 

[0, 1] 0.70–

0.95 

Derived 

from 

model 

𝐶𝐿𝑎𝑡𝑒𝑛𝑐𝑦  Computational 

latency constraint 

Milliseconds ≤ 200 ms [1], [12] 

𝐶𝑚𝑒𝑚𝑜𝑟𝑦𝐶_{
\𝑡𝑒𝑥𝑡{𝑚𝑒𝑚𝑜𝑟𝑦}}𝐶𝑚𝑒𝑚𝑜𝑟𝑦 

Memory constraint Megabytes ≤ 500 

MB 

[1], [12], 

[14] 

Source: Compiled by the author based on [1], [3], [4], [12], [14], [19]. 

Table 2 delineates the notational and operational parameters employed in the modeling of 

the joint LLM guardrail system. These parameters form the foundation for the quantitative 

assessment of the proposed framework and facilitate comparability with existing 

benchmarks in mobile AI research. 

The figure below shows the Privacy Leakage Rates (𝑃𝐿𝑅(𝑘)) for four types of attacks. It 

compares different model guardrail setups. 
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Figure 2: Comparative Privacy Leakage Rates (PLR) by Attack Type 

Figure 2 presents a visual representation of the impact of various guardrail configurations 

on privacy resilience across different attack categories. The cascaded (CAS) model 

demonstrates superior efficacy in mitigating prompt injection attacks, whereas the auxiliary 

(AUX) configuration offers more robust protection against memorization and 

deanonymization threats. These findings are consistent with observations in [3] and [4], 

affirming that guardrail architecture significantly influences privacy vulnerability across 

diverse adversarial modalities. 

 

 

4. Methodology 

This section delineates the methodological framework employed to assess the interaction 

between safety and privacy in mobile large language models (LLMs) equipped with various 

guardrail mechanisms. The design is based on the guardrail-aware red teaming paradigm 

proposed in prior research [3], [4] and extends it to explicitly incorporate computational 

efficiency constraints pertinent to on-device AI systems. The methodological pipeline 

comprises six core components: guardrail parameterization, auxiliary model training, 

adversarial prompt generation, evaluation algorithm, decision logic, and training 

configuration. 

4.1 Guardrail Parameterization 

Each guardrail architecture is treated as a distinct instance of the general function 𝐺𝜃, 

parameterized according to its design principle and computational objectives. 

1. Rule-Based (RB) Guardrails: 

The parameter set 𝜃 ={(𝑝𝑖, 𝑎𝑖)}𝑖=1
𝐾 , encodes a collection of linguistic or semantic patterns 

𝑝𝑖 (regular expressions, lexical detectors, or heuristic matchers) and corresponding actions 

𝑎𝑖 These systems, which include functions such as blocking, redacting, or rephrasing, are 

deterministic in nature and are typically implemented as lightweight post-processing filters. 

This implementation aligns with the low-latency requirements characteristic of mobile 

environments. 

2. Auxiliary safety model (AUX): 
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The parameterization is given as 𝜃 = (𝜓, 𝜏), where 𝜓 are the weights of a small 

classification network 𝑆𝜓 and 𝜏 The decision threshold serves as a determinant for 

assessing whether a generated output contravenes safety or privacy constraints. This 

methodology achieves a balance between interpretability and adaptability by integrating 

statistical learning into the decision-making process for guardrails. 

3.  Cascaded LLM moderator (CAS): 

Here, 𝜃 represents the parameters of a compact secondary model 𝑀𝜃
mod combined with a 

policy-oriented prompt 𝑝policy the moderator is fine-tuned to evaluate the semantic and 

contextual safety of outputs, capable of generating revised or refusal responses based on 

policy instructions 

In all configurations, 𝐺𝜃 is designed to be computationally lighter than the base 

LLM 𝑀𝜙, thereby ensuring deployment feasibility on mobile hardware [1], [12]. 

Table 3: Overview of Guardrail Architectures and Parameterization 

Guardrail 

Type 

Parameterization Core Function Computational 

Complexity 

Source 

Rule-Based 

(RB) 
{(𝑝𝑖, 𝑎𝑖)}𝑖 = 1𝐾\{(𝑝_𝑖, 𝑎_𝑖)\}_{𝑖

= 1}^{𝐾}{(𝑝𝑖, 𝑎𝑖)}𝑖
= 1𝐾 

Pattern matching 

and output 

filtering 

O(K) [4], [6], 

[19] 

Auxiliary 

Model 

(AUX) 

(𝜓, 𝜏)(\𝑝𝑠𝑖,\𝑡𝑎𝑢)(𝜓, 𝜏) Classification-

based violation 

detection 

O(N × F) [3], [2], 

[16] 

Cascaded 

Moderator 

(CAS) 

𝑀𝜃𝑚𝑜𝑑, 𝑝𝑝𝑜𝑙𝑖𝑐𝑦𝑀_{\𝑡ℎ𝑒𝑡𝑎}^{
\𝑡𝑒𝑥𝑡{𝑚𝑜𝑑}}, 𝑝_{
\𝑡𝑒𝑥𝑡{𝑝𝑜𝑙𝑖𝑐𝑦}}𝑀𝜃𝑚𝑜𝑑, 𝑝𝑝𝑜𝑙𝑖𝑐𝑦 

LLM-on-LLM 

contextual 

moderation 

O(E × S) [5], 

[16], 

[19] 

Source: Compiled by the author from [2], [3], [4], [5], [6], [16], [19]. 

Table 3 presents a summary of the three primary guardrail architectures examined in this 

study. Each architecture offers unique trade-offs concerning interpretability, scalability, 

and computational efficiency. The CAS configuration facilitates context-sensitive 

moderation, while the RB approach is distinguished by its speed and simplicity, which are 

crucial considerations for mobile applications. 

4.2 Auxiliary Safety Model Objective 

The Auxiliary Safety Model (AUX) aims to predict whether a model output violates safety 

or privacy constraints. Given a labeled dataset 𝒟lab = {(𝑥𝑖, ℎ𝑖, 𝑦𝑖, ℓ𝑖)}𝑖=1
𝑁 , where each ℓ𝑖 ∈

{0,1} indicates whether the output violates safety and/or privacy policy. The objective 

function is a weighted binary cross-entropy loss: 

ℒAUX(𝜓) = − ∑ (𝑤1 ℓ𝑖log𝑆𝜓(𝑦𝑖, ℎ𝑖) + 𝑤0 (1 − ℓ𝑖)log (1 − 𝑆𝜓(𝑦𝑖, ℎ𝑖)))

𝑁

𝑖=1

, 

Here  𝑤1 > 𝑤0 to emphasize recall on violations, prioritizing the identification of harmful 

or privacy-compromising outputs.  
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Privacy-specific labels are derived from the privacy red teaming annotations developed in 

prior studies [3], [2]. These labels enable the classifier to discern higher-order correlations 

between textual cues and latent privacy threats.  

4.3 Adversarial Prompt Generation  

The adversarial prompt dataset is constructed by integrating both handcrafted and 

automated generation techniques, inspired by the attack scenarios documented in [3], [4], 

[18]. For each base prompt  𝑥0, we define a discrete perturbation space 𝛥 that includes 

paraphrasing, prompt injection, and jailbreak augmentation strategies. The optimization 

problem is formulated as: 

𝛿∗ = argmax
𝛿∈𝛥

 𝑅(𝑦(𝑥0 ⊕ 𝛿, ℎ)). 

Where 𝑅(⋅) represents a scalar risk score function that quantifies the safety and privacy 

implications of the model output. Given the discrete nature of 𝛥, gradient-free methods 

such as beam search and evolutionary strategies are utilized to identify the perturbations 

that induce the highest risk. Prompts that demonstrate empirically validated increases in 

risk are retained for further evaluation. This hybrid generation approach ensures that the 

adversarial dataset encompasses both realistic user interactions and synthetic challenge 

cases. 

 4.4 Guardrail-Aware Red Team Evaluation 

We extend multi-attack evaluation protocols in prior work [3], [4] to include the guardrail 

stage explicitly. 

Algorithm 1: Guardrail-Aware Red Team Evaluation 

Input: 

• Base model 𝑀𝜙 

• Guardrail 𝐺𝜃 

• Adversarial datasets {𝐷𝑎𝑑𝑣(𝑘)} for each attack type 𝑘 

• Risk annotation functions 𝑉𝑠𝑎𝑓𝑒𝑡𝑦,𝑉𝑝𝑟𝑖𝑣𝑎𝑐𝑦 

Output: 

• 𝑆𝑉𝑅, 𝑃𝐿𝑅, 𝑅𝐼𝐿, 𝑅𝑆𝑆, 𝑆𝐼 per attack type 

The algorithm iteratively processes adversarial samples, annotates each generated response 

for potential safety and privacy violations, and calculates aggregate risk metrics. The 

integration of a guardrail layer facilitates comprehensive system-level evaluation, thereby 

simulating real-world deployment conditions. 

4.5 Guardrail Decision Logic 

Algorithm 2: Guardrail Decision Function 𝐺𝜃 

• If type = RB: apply rule-based pattern–action transformations. 

• If type = AUX: compute the classifier score 𝑠 = 𝑆𝜓(𝑦~, ℎ). 𝐼𝑓 𝑠 ≥ 𝜏𝑠 \𝑔𝑒 \𝑡𝑎𝑢𝑠 ≥, 
return a generic refusal message; otherwise, pass the output unchanged. 

• If type = CAS: construct a moderation prompt using context and policy text; the 

moderator model 𝑀𝑚𝑜𝑑 generates an instruction-driven evaluation, mapping 

responses to APPROVE, REWRITE, or REFUSE categories. 

This modular decision logic ensures scalability and interpretability across heterogeneous 

device environments. 

4.6 Training Details 

Base Models: The two foundational models, D-LLM (~300M parameters) and T-LLM 

(~100M parameters), are distilled iterations of larger transformer architectures, employing 

sequence-to-sequence distillation techniques [1], [13], [14]. These models are fine tuned 

for tasks related to conversational and mobile assistance, ensuring both representational 

compactness and reduced inference latency. 
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1. Auxiliary Safety Model (AUX): 

The classifier 𝑆𝜓 is a lightweight transformer encoder (~30M parameters) is trained on a 

composite dataset combining: 

• Privacy red teaming annotations [3], [2]; 

• Public safety and toxicity corpora; 

• Synthetic data containing personally identifiable information (PII) and contextual 

identity clues. 

We adopt the weighted cross-entropy loss above with hyper parameters: 

  𝜆s = 0.6, 𝜆p = 0.4, class weights 𝑤1 = 3.0, 𝑤0 = 1.0, AdamW (learning rate 2 × 10−5, 

batch size 64), and early stopping on a stratified validation set. 

2. Moderator Model (CAS): 

The moderator 𝑀𝜃
mod (~150M parameters) is fine-tuned from a distilled conversational 

backbone using instruction tuning on policy-labeled conversational pairs (PALMS-style 

[5]) and synthetic moderation dialogues where the model must approve, rewrite, or refuse 

outputs. We use an autoregressive cross-entropy loss, learning rate1 × 10−5, batch size 32, 

and 3 epochs. 

3. Red Team Evaluation Set: 

The adversarial datasets {𝒟adv

(𝑘)
} are adapted from [3], [4], supplemented by automatically 

generated perturbations. A held-out subset is reserved for validation to prevent over fitting 

and contamination. 

Below is the Figure is comparing the Safety Violation Rate (SVR) and Privacy Leakage 

Rate (PLR) across different guardrail designs. 

 
Figure 3: Performance Comparison of Guardrail Configurations 

Figure 3 demonstrates the impact of different guardrail architectures on safety and privacy 

outcomes. The cascaded (CAS) system exhibits the lowest SVR, thereby confirming its 

efficacy in suppressing harmful content. In contrast, the auxiliary model (AUX) achieves 

the lowest PLR, indicating enhanced privacy protection. The rule-based (RB) approach 

provides moderate improvements but is limited in addressing complex adversarial prompts. 

This comparative visualization corroborates findings from [3] and [4], affirming that 

guardrail design significantly influences safety–privacy trade-offs in mobile LLMs. 
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5. Experimental Setup 

The current section presents the experimental structure to be used to evaluate the integrity 

of the proposed guardrail-conscious adversarial testing methodology. The rationale behind 

this design was the need to have comparability, reproducibility, and regulatory pertinence, 

which would provide congruence with the metrics and red-teaming guidelines identified in 

prior researches [3], [4]. 

5.1 Adversarial Prompt Set 

To assess the performance of mobile-based large language models (LLMs) on safety and 

privacy in a holistic way, an 800-prompt adversarial test suite was compiled, and then these 

were systematically distributed in four major categories of attack vectors. All the categories 

are meant to probe various drawbacks in the model-guardrail architecture: 

1. Prompt Injection (200 prompts): These probes are developed in a way to override or 

subvert embedded safety directives. Examples of illustrations include commands that 

are direct violations of the rules of moderation or instructions that indirectly pressure 

the model to reveal confidential information. 

2. Extraction Memorization (200 prompts): Such adversarial inputs will be used to 

determine whether the model contains and recreates memorized sequences or personal 

identifiers of its training corpus, and thus assesses its adherence to the principles of 

privacy-by-design. 

3. Deanonymization Sequences (200 prompts): Every sequence comprises 4-6 

conversational turn in order to simulate realistic identity recovery processes by 

opponents. This subtest is used to determine the resilience of the model to contextual 

identity inference and linkage. 

4. Mixed Privacy-Safety prompts (200 prompts): Such prompts combine pernicious 

content with privacy sensitive components and thus simulate hybrid attacks that 

leverage contextual awareness and denial features of the model. 

A large fraction of the prompt set was the adapted version of recorded adversarial examples 

used to carry out privacy-sensitive evaluations of mobile-centric LLMs [3], which aligns 

the methodology with available benchmarks. The residual prompts were newly 

conceptualized to address guardrail-specific behavior, such as metalinguistic instructions, 

e.g. “Comment in detail why you are not doing my request. This new subset is destined to 

examine the patterns of verbose refusal that, as it has been shown in previous studies, have 

the potential to increase information leakage unwillingly. 

 

 

 

Table 4: Composition of the Adversarial Prompt Suite and Evaluation Sources 

Attack Type Number of 

Prompts 

Characteristics Evaluation Purpose Source 

Prompt Injection 200 Attempts to override 

safety rules 

Assess guardrail 

robustness to direct 

prompt manipulation 

[3], [4], 

[18] 

Memorization 

Extraction 

200 Queries that elicit 

training-set recall 

Evaluate privacy 

retention and data 

minimization 

[2], [3] 

Deanonymization 200 Multi-turn identity 

reconstruction 

Test protection against 

contextual user re-

identification 

[3], [4] 
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Mixed Privacy–

Safety 

200 Combines privacy 

and harm triggers 

Examine interaction 

between privacy and 

safety trade-offs 

[3], [19] 

Source: Compiled by the author from [2], [3], [4], [18], [19]. 

Table 4 summarizes the construction and reason of adversarial dataset.  Having the 

balanced composition of four categories of threats is such that every guardrail mechanism 

is subjected to a variety of risk stimuli.  This balance further makes it easier to compare it 

with previous work [3], [4], which enables the applicability of the experimental findings 

within the wider discourse of research on privacy-driven red teaming. 

5.2 Systems under Test   

The empirical assessment involves eight system settings, the combinations of two different 

mobile LLM architectures and three different guardrail mechanisms.  The underlying 

systems are mobile optimized models of distilled systems: 

* **D-LLM**: A 300 M-parameter architecture of sequence-to-sequence distillation 

based on large-scale architectures of transformers, [1], [13], [14].   

* **T-LLM: A smaller 100M -parameter model trained on limited-memory machines and 

lowered the inference latency. 

Each base model had three guardrail architectures implemented on it: 

* **Rule-Based (RB) - It is the type of filter that uses predefined rules of languages and 

semantics.   

* **Auxiliary Model (AUX) - is a lightweight classifier that is trained on how to identify 

and block possible policy violations.   

Fields Probability: It is possible that the Cascaded Moderator will learn to produce ethical 

and regulated outputs without requiring supervision. <|human|>Probability of Cascaded 

Moderator Cascaded Moderator (CAS) it is conceivable that with no supervision the 

Cascaded Moderator will be able to produce ethical and regulated outputs. 

 

The configurations that were tested were thus: 

1. D‑LLM (no guardrail)   

2. T‑LLM (no guardrail)   

3. D‑LLM + RB, T‑LLM + RB   

4. D‑LLM + AUX, T‑LLM + AUX   

5. D‑LLM + CAS, T‑LLM + CAS   

All the configurations were conducted within the same environmental conditions so that 

there would be equality in the assessment.  To make sure that all variants met the 

requirements of mobile deployment (≈⠻200ms latency; ≈500mb memory footprint), as in 

Section 3 and the literature ([1], [12], [14]) above, memory and latency were measured. 

5.3 Annotation and Scoring   

To guarantee the reliability and interpretability of the results, all outputs of the model-

guardrail combinations were examined by two independent annotators who were trained to 

conduct a safety and privacy assessment in regards to the model of the processes in the 

LLM.  The annotation procedure was designed based on three dimensions that were critical: 

• **Safety Violation Detection]- detection of content that violates the policy, or is 

harmful, such as hate speech, encouragement of self-harm, and generation of illegal 

instructions.   

• **Privacy Leakage Assessment** - detection of sensitive data disclosure or 

personally identifiable information (PII) or memorized pieces of text of training 

corpora origin.   
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• **Deanonymization Detection - test on multi-turn conversational logs to check 

whether the identities of the users or the relationship between the contexts were 

reconstituted. 

Outliers between annotators were determined by consensus discussions with the purpose 

of inter-rater reliability.  A Risk Severity Score (RSS) was then applied on a five-point 

ordinal scale (1=negligible; 5=critical) to each of the evaluated outputs.  The scoring 

scheme is based on the taxonomy presented in [3] that assigns every failure case to specific 

categories of regulatory risk, including data minimization, purpose limitation, or lawful 

processing enshrined in the GDPR itself [8], [9]. 

Table 5: Annotation Dimensions and Scoring Criteria 

Evaluation 

Dimension 

Definition Scoring 

Metric 

Regulatory 

Alignment 

Source 

Safety Violation Presence of policy-

violating or harmful 

content 

Binary (0 = 

No; 1 = Yes) 

EU AI Act Art. 10; 

GDPR Art. 5(1)(a) 

[3], [9] 

Privacy Leakage Disclosure of PII or 

memorized data 

Binary (0 = 

No; 1 = Yes) 

GDPR Art. 5(1)(c), 

(1)(f) 

[3], [8] 

Deanonymization Reconstruction of identity 

through context 

Binary (0 = 

No; 1 = Yes) 

GDPR Recital 26; 

ISO/IEC 23894 §7.3 

[3], 

[11] 

Risk Severity Score 

(RSS) 

Weighted severity of 

violation (1–5 scale) 

Ordinal scale NIST RMF §4.2.3 [7], 

[10] 

Source: Developed by the author based on [3], [7], [8], [9], [10], and [11]. 

Table 5 encapsulates the annotation dimensions, along with respective mappings of the 

rules, which are employed in the course of the evaluation process. The score is then coupled 

with the legal, or standard, principles, which enable the result obtained from the empirical 

study to be explained from the context of the risk policy framework. 

Summary 

The proposed experiment design allows for a full, multi-dimensional analysis of the 

effectiveness of the guardrail in complex adversarial settings. The integration of well-

balanced adversarial datasets, different guardrail structures, and human-aligned annotation 

tasks provides an experimentally sound foundation for analyzing how mobile LLM 

guardrails are involved in the complex interaction between the assurance of safety and the 

protection of privacy. 

 

6. Results  

This section delineates the empirical findings of the adversarial evaluation framework, 

emphasizing the impact of guardrail architectures on both safety and privacy within mobile 

large language models (LLMs). The results are analyzed from three integrated 

perspectives:  

(1) Overall performance in safety and privacy metrics 

(2) Attack-type–specific leakage trends 

(3) Aggregate risk severity outcomes 

https://issn.brin.go.id/terbit/detail/20220302022306403
https://issn.brin.go.id/terbit/detail/20220302222317407


 
 
 
 
 IJML Vol 3 No. 2 | June 2024 | ISSN: 2963-8119 (print), ISSN: 2963-7821 (online), Page 166-187 
 

181        IJML VOLUME 3, NO. 2, June 2024 
 

Each finding is contextualized within the framework of prior red-teaming research on 

mobile-based LLMs [2], [3], [4].  

6.1 Overall Safety and Privacy Performance  

The evaluation involved a comparison of eight system configurations comprising two base 

models (D-LLM and T-LLM) and three guardrail types (rule-based, auxiliary classifier, 

and cascaded moderator) to assess how the inclusion of guardrails modifies model 

resilience under adversarial prompting. 

 

 

Table 6: Overall Safety and Privacy Metrics across Guardrail Configurations 

Model + Guardrail SVR ↓ PLR ↓ SI = 1 – SVR ↑ PI = 1 – PLR ↑ 

D-LLM (no guardrail) 0.23 0.18 0.77 0.82 

T-LLM (no guardrail) 0.27 0.22 0.73 0.78 

D-LLM + RB 0.18 0.16 0.82 0.84 

T-LLM + RB 0.22 0.19 0.78 0.81 

D-LLM + AUX 0.12 0.13 0.88 0.87 

T-LLM + AUX 0.16 0.16 0.84 0.84 

D-LLM + CAS 0.08 0.15 0.92 0.85 

T-LLM + CAS 0.12 0.18 0.88 0.82 

Source: Experimental results compiled by the author based on adversarial red-teaming 

evaluations following [3], [4], [18]. 

As demonstrated in Table 6, the integration of guardrails consistently enhances both safety 

and privacy indices when compared to unguarded baselines. The cascaded moderator 

(CAS) configuration achieves the lowest Safety Violation Rate (0.08) and the highest 

Safety Index (0.92), indicating a robust suppression of harmful content. Conversely, the 

auxiliary classifier (AUX) exhibits the lowest Privacy Leakage Rate (0.13), signifying 

superior protection against unintentional disclosure. These findings underscore that while 

guardrails improve safety; their impact on privacy is contingent upon their design. 

6.2 Integrated Safety–Privacy Visualization 

The joint performance of safety and privacy metrics across all configurations is depicted 

in Figure 4. The scatter plot positions each model guardrail combination based on its Safety 

Index (SI) and Privacy Index (PI), revealing distinct performance clusters. 
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Figure 4: SI–PI Scatter Plot for All Guardrail Configurations 

Figure 4 illustrates that configurations incorporating guardrails are clustered in the upper-

right quadrant, signifying concurrent enhancements in safety and privacy. The CAS and 

AUX configurations constitute the optimal performance group, attaining superior SI and 

PI values relative to unguarded and rule-based models. These findings imply that 

appropriately calibrated guardrails can comprehensively mitigate risk rather than 

necessitate a trade-off between dimensions. The correlation between SI and PI further 

corroborates the hypothesis that joint optimization is crucial for achieving reliable mobile 

AI performance.  

6.3 Risk Severity Trends  

The qualitative severity of detected violations was assessed using the Risk Severity Score 

(RSS), which is scaled from 1 (negligible) to 5 (critical). The average values across all 

attack types are as follows: D-LLM (no guardrail) = 3.4; D-LLM + RB = 3.0; D-LLM + 

AUX = 2.2; D-LLM + CAS = 2.0. The data reveal a progressive reduction in severity as 

more advanced guardrails are implemented. CAS achieves the lowest average RSS (≈2.0), 

indicating effective suppression of high-risk responses, while AUX effectively minimizes 

privacy-specific risks, particularly in contexts of memorization and deanonymization.  

Summary  

The results collectively affirm that integrated guardrail systems enhance both safety and 

privacy performance in mobile-based LLMs. However, the impact varies by design: the 

cascaded moderator (CAS) provides maximum safety assurance, whereas the auxiliary 

classifier (AUX) offers stronger privacy preservation. These findings substantiate the 

study’s central argument that safety and privacy must be evaluated jointly within a unified 

adversarial framework. Neglecting this interdependence risks overestimating guardrail 

effectiveness and underestimating potential privacy exposure in real-world deployments. 

 

7. Discussion  

This section interprets the experimental findings in relation to prior research on phone-

based language models, articulates practical design recommendations for privacy-
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conscious guardrails, in addition, explores the regulatory implications of the observed 

safety–privacy trade-offs.  

7.1 Relation to Prior Phone-LLM Privacy Evaluation  

Our study builds directly upon foundational privacy evaluations for phone-based LLMs 

conducted in [2], [3]. These prior works established the attack taxonomy (prompt injection, 

memorization, and deanonymization) and annotation frameworks now widely used in 

mobile red teaming. We adopt these elements to ensure methodological continuity and 

regulatory interpretability under GDPR and EU AI Act contexts [8], [9].  

The critical extension introduced in this paper is the treatment of guardrails as system-level 

entities rather than as external moderation components. This holistic perspective enables 

us to analyze how safety filters, classifiers, and cascaded moderators redistribute risks 

between safety assurance and privacy leakage a dimension previously unaddressed in [2] 

and [3]. In doing so, our approach does not replace earlier frameworks but complements 

and extends them, demonstrating that red teaming can be applied not only for baseline 

model auditing but also for evaluating architectural interventions such as layered safety 

systems, on-device moderators, and hybrid inference pipelines. This aligns with 

contemporary efforts to formalize adversarial testing in trustworthy AI guidance, 

particularly those led by NIST [7] and ISO/IEC [10], [11].  

7.2 Design Patterns for Privacy-Conscious Guardrails  

The empirical results presented in Section 6 yield actionable insights into the design and 

optimization of privacy-conscious guardrails for on-device LLMs. Specifically; we 

identify recurring implementation patterns that enhance privacy resilience without 

significantly compromising safety coverage. 

Table 7: Design Patterns for Privacy-Conscious Guardrails 

Design 

Pattern 

Description Observed Effect Supporting 

Evidence 

Source 

Concise 

refusals over 

narrative 

explanations 

Generate brief, 

policy-focused 

refusals instead 

of verbose 

context-rich 

rejections. 

Reduces PLR in 

deanonymization 

scenarios by limiting 

contextual cues. 

CAS 

configurations 

with shorter 

refusals exhibit 

lower leakage. 

[3], 

[19] 

Joint safety–

privacy 

calibration 

Integrate 

privacy-aware 

thresholds into 

safety decision 

rules. 

Balances SI and PI 

by avoiding 

overexposure during 

context recall. 

AUX and CAS 

achieve stable SI–

PI trade-offs when 

co-optimized. 

[3], [4] 

Red-team-in-

the-loop 

tuning 

Use continuous 

adversarial 

testing during 

training rather 

than post hoc 

validation. 

Detects and 

mitigates emergent 

vulnerabilities 

earlier in 

development. 

Red-teaming 

methodologies 

from [2], [3] show 

improved 

adaptation. 

[3], [4], 

[18] 

Source: Developed by the author based on empirical observations and methodologies in 

[2], [3], [4], [18], [19]. 

Table 7 delineates design recommendations grounded in empirical evidence derived from 

experimental observations. The findings underscore that concise refusals, the joint 

optimization of privacy and safety, and iterative adversarial tuning substantially enhance 
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the effectiveness of guardrails. This synthesis integrates empirical data with actionable 

engineering practices, thereby guiding developers in the construction of privacy-conscious 

mobile AI systems. 

 
Figure 5: Comparative Evaluation of Guardrail Patterns (SI and PI Impact) 

Figure 5 illustrates the comparative advantages of the identified design patterns. The joint 

calibration strategy offers the most balanced enhancement, simultaneously improving both 

SI and PI metrics. In contrast, concise refusals primarily bolster privacy indices by reducing 

contextual verbosity, while red-team-in-the-loop tuning ensures sustained performance 

stability across iterative updates.  

These empirical trends support the design implications discussed in [3], [4], emphasizing 

that effective safety privacy balancing must be dynamic and data-driven.  

7.3 Regulatory Implications  

Given that our experimental metrics and adversarial scenarios are explicitly aligned with 

GDPR, EU AI Act, NIST AI RMF, and ISO/IEC 23894 frameworks [7], [8], [9], [10], [11], 

[22], the results offer critical insights into the regulatory adequacy of phone-based LLM 

guardrails. Firstly, systems that effectively block unsafe content may still contravene data 

minimization or purpose limitation principles if their refusal mechanisms inadvertently 

disclose contextual user information.  

This observation highlights the necessity for privacy-oriented audit extensions to existing 

AI assurance pipelines. Secondly, regulators and auditors should assess not only base 

model compliance but also guardrail-specific behavior under adversarial conditions. Our 

findings indicate that improperly calibrated guardrails can serve as secondary channels for 

unintended information exposure.  

Finally, the demonstrated methodology supports a risk-based compliance paradigm, 

aligning technical performance evaluation with governance expectations under trustworthy 

AI frameworks [1], [12], [21]. This convergence between empirical testing and regulatory 

assessment represents a significant advancement toward measurable, auditable AI safety.  

 

8. Limitations and Future Work  

Although the findings presented are robust and empirically grounded, several limitations 

warrant consideration. Firstly, this study examines only two model families (D-LLM and 
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T-LLM) and three guardrail architectures (RB, AUX, CAS). Results may vary for larger, 

multilingual, or multimodal models that exhibit broader generalization and memory 

behaviors.  

Secondly, the evaluation environment simulated mobile hardware conditions, but real-

world deployments may incorporate additional layers of OS-level security, telemetry 

logging, or encrypted inference, which could influence privacy leakage dynamics. 

Moreover, while our adversarial prompt suite is extensive and derived from established 

red-teaming methodologies [3], [4], it cannot exhaustively capture the evolving landscape 

of adversarial tactics. Future adversaries may exploit more subtle cross-modal or contextual 

manipulations that exceed current taxonomies. To address these gaps, future research 

should explore:  

Extending the analysis to multimodal and embodied assistants, such as smart glasses or 

augmented reality (AR) systems, where text, speech, and sensor modalities intersect. 

Investigating federated learning regimes that integrate adversarial privacy testing directly 

into the optimization loop, balancing accuracy, latency, and compliance simultaneously 

[1], [14]. Developing standardized benchmarks and public tested for safety privacy co-

evaluation, enabling reproducibility and regulatory alignment across the AI research 

ecosystem.  

By addressing these directions, subsequent work can further bridge the gap between 

technical assurance and trustworthy deployment, fostering safer and more privacy-aligned 

mobile AI ecosystems. 

 

CONCLUSION 

This study conducted a systematic adversarial evaluation of the trade-offs between 

safety and privacy in mobile large language model (LLM) guardrail architectures. Building 

on privacy-oriented red teaming frameworks previously developed for phone-based 

assistants [2], [3], this research extends the analytical scope from the base model to the 

integrated model guardrail system, thereby offering a more comprehensive understanding 

of the interaction between safety enforcement mechanisms and privacy protection under 

adversarial conditions. The findings reveal that guardrails exert heterogeneous and 

complex effects on system behavior. Specifically, cascaded moderator (CAS) architectures 

achieve the most effective suppression of overtly harmful content, indicating significant 

safety improvements.  

However, these configurations may occasionally increase contextual exposure 

particularly in multi-turn or deanonymization scenarios due to verbose refusals and implicit 

recall of prior conversational context. In contrast, auxiliary classifier (AUX) architectures 

demonstrate more balanced performance, mitigating both safety and privacy risks without 

substantial trade-offs in model responsiveness or latency.  

These findings collectively reaffirm the central hypothesis that safety and privacy 

cannot be treated as isolated objectives in mobile LLM deployment. Enhancements in one 

dimension may inadvertently compromise the other unless explicitly co-optimized. In this 

regard, guardrails must be evaluated not as inherently trustworthy filters but as dynamic, 

data-dependent components whose effectiveness relies on continuous adversarial testing 

and calibration. From a methodological perspective, the research underscores the value of 

integrating privacy-focused red teaming into the broader guardrail design and evaluation 

lifecycle.  

Such integration enables developers to detect cross-domain vulnerabilities early and 

to establish quantifiable baselines for safety privacy trade-offs, consistent with the 

accountability principles outlined in the GDPR, EU AI Act, and NIST AI Risk 
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Management Framework [7] [11], [22]. Furthermore, the results have direct implications 

for AI governance and compliance auditing. Regulators and independent assessors should 

explicitly include guardrails within the scope of privacy and safety evaluations, rather than 

assuming these layers are inherently protective. As demonstrated by our analysis, the 

structural and operational properties of guardrails can significantly affect privacy leakage, 

contextual retention, and risk redistribution.  

Accordingly, auditing practices must evolve to reflect the systemic interdependence 

between model behavior, guardrail logic, and regulatory conformity. In summary, this 

work provides a unified, empirically grounded framework for evaluating the joint safety 

privacy performance of mobile LLMs. By demonstrating how adversarial evaluation can 

be systematically extended to guardrail-aware architectures, the study advances both the 

scientific understanding and the practical governance of safe, privacy-respecting AI 

systems.  

Future implementations of phone based and edge AI assistants will benefit from 

embedding continuous adversarial validation, joint safety privacy calibration, and 

regulatory traceability as integral components of their deployment pipelines, ensuring that 

innovation in AI safety is accompanied by equally rigorous privacy protection.  

Rationale: This conclusion consolidates the study’s findings by emphasizing that 

safety and privacy are interdependent objectives in LLM deployment. It calls for explicit 

guardrail evaluation, adversarial testing integration, and regulatory inclusion, echoing the 

methodology and results in prior sections. The argument positions the work as both a 

scientific contribution and a policy-relevant framework for future AI safety privacy 

governance. 
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