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by creating an adversarial evaluation system that analytically studies
the compromising of safety and privacy in mobile LLM guardrail
design. The framework uses systematized categories of attacks in the
form of prompt injection, memorization and deanonymization to test
the effects of different guardrail architecture in system behavior under
realistic mobile conditions. The experiments performed on
compressed LLMs have shown that, in addition to the beneficial
effects of the cascaded moderator architecture to reduce harmful
outputs, contextual leakage can also occur due to the verbose refusal
responses. On the other hand, the auxiliary safety models are
relatively balanced in their performance with low privacy leakage and
safety compliance. The findings point to the importance of co-
optimization of guardrail mechanisms to both provides safety and
privacy instead of seeing this as a protective or stand-alone element.
This study finds that adversarial privacy assessment should be part of
the development of mobile LLAMs, and as such, designs and
deployments ought to incorporate this concept, which will allow the
development of privacy-aware and regulation-compatible guardrails
of trusted Al in edge devices.
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INTRODUCTION

Large language models (LLMs) have also rapidly become the core technology of
natural language understood and generation and have become widely applicable across
industries. A growing number of these models are being implemented on mobile phones
and edge devices to act as a conversational assistant, summarization engine, personal
planner and intelligent content processor [1], [12], [14]. This has been enabled by the
proliferation of compressed transformer architectures and knowledge distillation methods
which have made it possible to infer high performance models at the edge, reducing
inference latency and limiting cloud dependency. This decentralization will promise great
enhancements in user experience, control of privacy and energy efficiency. Nonetheless, it
also creates new risk and harms vectors, since the localized application decreases
centralized control and audit abilities [3], [2].
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In particular, the security perimeter and accountability of the regulatory policies shift
to users and hardware manufacturers as the on-device one replaces the cloud-based
inference. Mobile-based LLMs have vulnerabilities to leakage of data, memorization of
important content and adversarial manipulation of prompts all of which are possible in an
opaque environment with no real-time governance systems. As interactions with mobile
devices may include personal identifiers, contextual histories or location information, any
unwanted disclosure may contravene fundamental values of privacy protection including
data minimization and purpose limitation. These issues prove the acute necessity of strong
guardrail mechanisms, which can be used to effectively curb such risks in distributed,
device-level Al ecosystems [3], [2].

In order to control these complex risks, scholars and engineers have started to
structure and combine guardrails that include a wide range of solutions that include rule-
based filters, auxiliary classifiers, and cascaded safety models. They are supposed to
restrict the output of the models according to ethical, regulatory, and organizational
requirements without the need to sacrifice the overall usability and fluency of the LLM [4],
[6], [16], [19]. Rule-based systems are based on linguistic or semantic constraints that are
manually developed; auxiliary classifiers use trained models to recognize policy-violating
outputs; and cascaded a classifier which may be called LLM-on-LLM moderation adds a
supervisory layer, and is able to evaluate and rephrase responses before they are delivered
to the user. Although these methods have proven themselves to be effective in preventing
blatant safety breaches, i. e. toxic speech, misinformation, or even content promoting self-
harming behavior, their effects on the privacy dynamics in adversarial circumstances have
been underutilized. Mobile and edge environments are especially interesting to worry
about, because prompts in these environments frequently imply personally identifiable
information (PII) or situational metadata, and since the guardrails in these environments
might interfere in unpredictable ways with model behavior, this increases privacy
exposure.

Privacy-focused red teaming empirical research has pointed out peculiar weaknesses
in mobile executions of LLMs under adversarial inquiries [3], [2]. Typologies of attacks,
including prompt injection, memorization extraction and contextual deanonymization,
have shown that attackers can easily pressure models into exposing training data or user
information that are sensitive in nature. These results are of great importance to the
adherence to international data protection schemes, as they provoke the beliefs regarding
consent, anonymization, and user control. Combining these technical vulnerabilities with
legal terms like data minimization and purpose limitation has proven in previous studies to
provide the framework of a quantitative risk assessment paradigm specific to the phone-
based Al systems. However, the current assessments are largely deficient in the interactive
effects of safety guardrails, which is mostly limited to vulnerabilities in the base model,
without taking into consideration the effect of the auxiliary mechanisms to
increase/decrease the privacy risk in the real world situation of their use.

Simultaneously, regulatory authorities and standards associations have been stepping
up their push to find governance structures to Al responsible implementation. Programs
NIST and ISO/IEC emphasize the need to have a trustworthy Al - strong, transparent,
explainable, and privacy-by-design [7], [10], [11], [22]. In the meantime, the EU Al Act
and the White House Executive Order on Safe, Secure, and Trustworthy Al confirm the
necessity of combined consideration of safety and privacy aspects in the lifecycle of
foundation models [1], [12], [15], [21]. However, although this policy interest is
increasingly growing, the empirical literature has not sufficiently explored whether the
balance between the safety and privacy of various guardrail architectures deployed in
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adversarially rich, real world environments is inherently influenced by the architectures.

The paradigm of current evaluation commonly views guardrails as rigid or opaque

modules, in other words, black boxes, without evaluating their indirect impact on privacy

leakage, contextual exposure, or even re-identification risk.

To address these gaps, the current work modifies and expands previous privacy-
conscience red teaming models on phone-based LLM [3], which includes the entire
interaction between the base models and guardrail systems. This study explores the effect
of these mechanisms on the profile of joint safety-privacy performance of mobile Al
systems by conceptualizing the guardrails as first-class and not as safety layers. The bigger
picture is to develop a reproducible assessment model that would be able to reflect the
subtle trade-offs between the harm reduction and privacy protection.

On this basis, the following are some of the key contributions of this paper:

1. Guardrail-sensitive red teaming model: We introduce new guardrail architectures to
the privacy evaluation methods currently used on phone-based LLMs [3], which
explicitly incorporates guardrail architectures into the evaluation boundary. This
method allows having a complete picture of the impact of guardrail parameters on the
safety violation rates and privacy leakage rates during adversarial probing.

2. Comparison of guardrails designs: Our empirical comparison is of three large classes
of guardrails: rule-based filters, auxiliary safety models, and cascaded, so-called, LLM-
on-LLM, moderators, on compact and mobile-optimized architecture, like DistiIBERT
and TinyGPT. Assessments are based on a structured set of adversarial prompts that
are based on existing taxonomies of red teaming [3], [4].

3. Patterns of privacy-conscience guardrails: Using the empirical results, we come up
with a set of architectural and procedure suggestions of designing guardrails that will
have high coverage in terms of safety without undermining the privacy resilience. In
addition, we highlight how adversarial privacy assessment can be directly integrated
into the design and configuration process of guardrail mechanisms.

Overall, the study is an addition to the growing body of literature regarding trustworthy

and privacy-preserving Al by quantitatively measuring the trade-off between safety and

privacy in the deployment of mobile LLM via various guardrail architectures. The
suggested framework and findings should clarify to both practitioners building on-device

Al systems, and policymakers whose main duty is to ensure that technical protection and

regulatory requirements suit the requirements of current requirements.

Background and Related Work
On-Device Al and Phone-Based LLAM

Recent advancements in model compression, quantization, and knowledge
distillation have made transformer based large language models (LLM) capable of running
on the edge on smartphones, and other devices [1], [12]-[15]. This technology has made
mobile systems into potent entities that are able to generate texts in real-time, summarize
context, and manage tasks even in the case of poor connectivity. The on-device Al
paradigm derived from the results allows achieving reduced latency, a higher degree of
personalization, and more energy efficiency. Nevertheless, such change has also moved the
point of responsibility of safety and privacy to decentralized servers to individual user-
controlled spaces, making it more difficult to audit regulatory and to provide technical
regulation.

On-device deployments result in fragmented ecosystems, with varied update
frequencies and defined user behaviors [3], [2], unlike cloud-hosted architecture where it
is possible to uniformly administer centralized monitoring, access controls and patch

168] . IJML VOLUME 3, NO. 2, June 2024



https://issn.brin.go.id/terbit/detail/20220302022306403
https://issn.brin.go.id/terbit/detail/20220302222317407

IJIML Vol 3 No. 2 | June 2024 | ISSN: 2963-8119 (print), ISSN: 2963-7821 (online), Page 166-187

management. In earlier studies of mobile LLMs, it is highlighted that these machines are
capable of storing user prompts, maintaining conversation histories, and that training
information is memorized when adversarial probed through inadvertent methods. Such
behaviors pose unique privacy issues, because local storage and computation make users
and regulators less transparent. Therefore, the deployment of mobile LLM is not to be
considered as a smaller version of cloud serving, but as a distinct risk regime, which
necessitates custom frameworks to assess safety, privacy, and reliability.

The development of edge intelligence therefore requires new privacy-sensitive
schemes and adjective governance approaches. These systems have adversarial
vulnerabilities as demonstrated by [3] and [2], and thus it is necessary to have guardrail
integration to consider both model-level and device-level risk factors. This knowledge
forms the basis through which further parts of this paper would be based on and focus on
joint assessment evaluation models that do not only focus on safety-related behaviors but
also on privacy-related behaviors in a coordinated approach.

Red Teaming and Privacy Evaluation

The idea of red teaming was first coined in the context of cybersecurity, where it is
proposed that the security of the system can be tested by adversarial simulation [3], has
been also applied to artificial intelligence, specifically to evaluate the resilience of LLMs
[2], [4], [18], [20]. Red teaming in this case would be the systematic exploration of
language models using adversarial prompts that intentionally encourage negative behaviors
or policy breaches. Conventional safety-based red teaming has concentrated more on
identifying dangerous or hazardous text; nonetheless, privacy-based red teaming extends
this to the analysis of the possibility of the models to leak training data, expose personal
identifiers, or recreate user-specific data [3].

Red teaming frameworks that focus on privacy are usually based on the organized
attack taxonomies that classify the threats as prompt injection, memorization extraction,
and contextual deanonymization. These taxonomies allow scholars to use a set of uniform
quantitative measures, including leakage probability, re-identification risk, and sensitivity
exposure scores, to determine the extent and occurrence of privacy violations. Moreover,
such behaviors are mapped to set regulatory constructs, including those of the General Data
Protection Regulation (GDPR) and the EU Artificial Intelligence Act (Al Act), which offer
a policy-relevant understanding of the performance of a model [8], [9].

It is based on evolving literature that the current study utilizes an equivalent attack
model and annotation framework but goes beyond the fundamental framework to test the
overall performance of distant LLMs and guardrails. This change of unit of analysis of
discrete models to multi-component model-guardrail systems is a vital transition on the
unit of privacy assessment, which enables more realistic testing of deployed Al behavior.

Large Language Models Guardrails

Guardrails, which include rule based filters, classification based monitors, and
cascaded safety systems, have been integrated into the essential elements of aligning
language model behavior with ethical and regulatory principles [5], [6], [16], [19]. Rule-
based filters are based on text-matching patterns or rules to block outlawed contents; they
are deterministic and based on heuristics, and classifier-based systems are based on
machine-learned models, which are used to detect, and filter unsafe content in real-time.
More recently, cascaded architectures, where smaller so-called moderator LLMs are used
to check the output of primary models and update it, have become popular because of their
flexibility and interpretability.
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These systems are further strengthened through complementary alignment methods,
including instruction tuning, human feedback-based reinforcement learning (RLHF), and
constitutional Al [6], [16]. Although such methods can significantly decrease the amount
of content toxic or violating policy, they can often overlook the issue of privacy,
particularly when there is an adversarial situation. As an example, a model may fail to
generate explicit harmful content, but still reveal personally identifiable information (PII)
in the form of memorized sequences or by reconstructing the context [2], [19].

This has been partially realized in privacy-focused red teaming research [3],
however, there is little empirical research that quantitatively measures risk redistribution
between safety and privacy of various guardrail architectures. This gap is directly filled by
the current study, which looks at the different effects of rule-based, auxiliary classifier and
cascaded guardrails on privacy leakage and safety performance, which, hence, adds new
empirical data to the privacy-conscious system design of Al

Regulatory and Standards Context

The modern regulatory landscape related to Al can be described as the one that focuses
more on the concepts of trustworthiness, accountability, and privacy-by-design. Data
minimizations, purpose limitation, fairness, and robustness are some of the major tenets
that are required by the GDPR [8] and the EU AI Act [9]. Likewise, NIST and ISO/IEC
publications, such as NIST AI Risk Management Framework (Al RMF 1.0) and
ISO/IEC23894:2023 offer detailed guidelines on how Al systems, in general, should
identify, be transparent, and manage risks [7], [10], [11], [22]. In addition to these, there is
complementary White House Executive Order on Safe, Secure, and Trustworthy Al [21],
which emphasizes the need to balance the privacy, and safety concerns at all levels of Al
implementation.

All these frameworks hold the view that a dual-pronged evaluation paradigm should be
applied, whereby safety measures have to be evaluated together with preservation of
privacy. A system that stops spam or any other output that is harmful or against policy but
unintentionally shows sensitive information is still non-compliant with regulatory
expectations. Based on this, guardrail designs should be considered not only in terms of
their effectiveness in censoring the unsafe content but also in terms of their role in
information exposure and the risk of re-identification.

Here, the current study complies with and elaborates on earlier privacy appraisal research
on phone-based models [3], the design of guardrail as a regulatory-engineering issue. This
framing facilitates the creation of Al architectures that are designed to be privacy-conscious
in nature such that the gains made on one dimension of trustworthiness (safety) do not
incidentally compromise a different dimension (privacy).

Table 1: Summary of Related Studies on LLM Privacy and Safety Evaluation

Study Primary Methodology | Key Source
Focus Contribution

AL 620t Data extraction Empirical Demonstrated = USENIX Security

et al. (2021) J=iit! adversarial training data Symposium
memorization  testing leakage in large
attacks models
Privacy = red Multi-attack Established International

[SE 1N IPR)N teaming for evaluation privacy  risk Journal of Science
phone-based taxonomy metrics aligned and  Technology
LLMs with GDPR (1JST)
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[4]
Weidinger
et al. (2021)

[16] Bai et
al. (2022)

[19]

Hendrycks
et al. (2020)

Taxonomy of Theoretical

LLM risks

Constitutional
Al for safety

Human-value
alignment

taxonomy and
evaluation

Al alignment
via ethical
constraints

Safety
benchmarking
of LLMs

Defined
categories  of
Al risk
including
privacy
Introduced AI
feedback
mechanisms
for
harmlessness
Developed
alignment
datasets for
social values

Source: Compiled by the author based on [2], [3], [4], [16], [19].

Table 1 provides an overview of academic literature that is relevant to the intersection of
privacy and safety in large language models (LLMs) evaluation. It proves that a number of
studies have been conducted on safety and ethical correspondence, but few studies have
systematically analyzed guardrail structures by privacy-sensitive adversarial experiments,

which highlights the originality of the present study.

The next grouped bar chart represents the proportion of research focus in the fields of
privacy, safety, and regulatory assessment of the mentioned studies.

Focus Intensity (0-1)

arXiv preprint
arXiv:2112.04359
arXiv preprint

arXiv:2212.08073

arXiv
arXiv:2008.02275
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mmm Regulatory Focus

[19]

Figure 1. Relative Scope of Previous Studies of the LLM
The comparative illustration of the areas of focus discussed by the pre-existing studies in
the context of privacy, safety, and regulatory issues is shown in figure 1. As visualized, it
can be seen that works that are referenced as [3] and [2] demonstrate a more significant
direction of privacy, whereas works [16] and [19] have the overarching direction of safety
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These conclusions highlight the analytical gap, which the given research aims to address
namely the lack of coordinated assessment models, which simultaneously embrace safety
guardrails and privacy resilience in the context of adversarial testing.

3. Problem Formulation
To strictly analyze how safety and privacy relate to each other in mobile large language
models (LLMs), we represent a mobile assistant as a complex system comprising of an
underlying language model and a corresponding guardrail system. This construct helps in
the evaluation of safety -privacy trade-offs using a single optimization framework, unlike
considering safety and privacy as distinct design objectives.
Formally, let:
Xx; € X be the user input (prompt) at turn t,
hs = (X1, Y1, «» Xt—1, Yt—1) The conversation history up to turn t,
Mgy: (X X H) - Y Be the base LLM with parameters¢,
Go: (Y X H) = Y Be the guardrail mechanism with parameters (or rules) 6. (Either as a
set of rules or learned parameters).
The unguarded response is

Ve =My (x¢, he),
Whereas the final guarded response is produce as:

Ve = Go(Fr, he).
This compositional structure illustrates the manner in which guardrails adjust or filter the
model's initial outputs prior to their delivery to the end user.
We posit a distribution of prompts and conversational histories that have been constructed
adversarial, denoted by D,4, The process was conducted through privacy-focused red
teaming, encompassing four primary attack types: prompt injection, memorization,
deanonymization, and mixed attacks, as delineated in [3], [4]. For a given adversarial
simple (x, h) ~ D,qy, we define binary indicator functions to measure violations of safety
and privacy policies:
Vaatety (¥, X, h) € {0,1}: 1 if the response violates the safety policy, 0 otherwise.

Vorivacy (¥, X, h) € {0,1}: 1 if the response leaks sensitive data or exhibits privacy violations

(memorization, deanonymization).
The anticipated rates of violation, specifically the Safety Violation Rate (SVR) and the
Privacy Leakage Rate (PLR), are subsequently formulated as follows:

SVR(d’! 9) = [E(x,h)~'Dadv [Vsafety(y(xi h), X, h)], PLR((;[), 9) =

]E(x,h)~Dadv [Vprivacy (y(x' h), X, h)]

To facilitate interpretability, we define the Safety Index (SI) and Privacy Index (PI) as
the complement of their respective violation rates

SI(¢,0) =1 —-SVR(¢,0), PI(¢,0) =1—-PLR(9,0).

These indices quantify model robustness in probabilistic terms, with higher values
indicating enhanced performance.

The primary optimization objective of this framework is to ascertain an optimal guardrail
configuration 6 for a given mobile LLM M¢ ensuring the maximization of both safety and
privacy while maintaining computational efficiency in terms of latency and memory. The

constrained multi-objective optimization problem is defined as follows:
min A, SVR(¢,6) + 2, PLR(¢, 6)

s.t. Clatency(e) =T,
Cmemory(g) S U
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Where A, 4, > 0 are trade-off coefficients that balance safety and privacy; 7 denotes the
maximum permissible latency, and u represents the memory budget for on-device
deployment. This formalization ensures that the resulting configuration remains feasible
within the constraints of mobile hardware a critical consideration for on-device Al systems

(1], [12].
We also consider attack type conditioned metrics, where Dﬂfv) denotes the distribution of
prompts for attack type k € {injection,memorization,deanonymization,mixed}, following

the categories in prior work [3]. For each type:
PLR(k) (¢P 0) = [E(x,h)~‘D§§3 [Vprivacy (y(xl h)l x' h)]

The quantities in question are utilized in the comparative analysis presented in Table 2 and
Figure 2, which elucidates the impact of various guardrail configurations on privacy
leakage across different adversarial scenarios.

Table 2: Model Parameters, Evaluation Metrics, and Performance Constraints

Symbol Definition Operational Typical | Source
Domain Range
Mo Base mobile LLM | Language — [1], [12],
(e.g.,  DistilBERT, | model [14]
TinyGPT)
GO Guardrail mechanism | Model  filter | — [4], [6],
(rule-based, auxiliary, | layer [19]
cascaded)
SVR Safety Violation Rate | [0, 1] 0.05— [3], [4]
0.30
PLR Privacy Leakage Rate | [0, 1] 0.10— [3], [4]
0.25
SI,PI Safety and Privacy | [0, 1] 0.70— Derived
Indices 0.95 from
model
CLatency Computational Milliseconds | <200 ms | [1], [12]
latency constraint
CmemoryC_{ Memory constraint Megabytes < 500 |[1], [12],
\text{memory}}Cmemory MB [14]

Source: Compiled by the author based on [1], [3], [4], [12], [14], [19].

Table 2 delineates the notational and operational parameters employed in the modeling of
the joint LLM guardrail system. These parameters form the foundation for the quantitative
assessment of the proposed framework and facilitate comparability with existing
benchmarks in mobile Al research.

The figure below shows the Privacy Leakage Rates (PLR(k)) for four types of attacks. It
compares different model guardrail setups.

173] . IJML VOLUME 3, NO. 2, June 2024


https://issn.brin.go.id/terbit/detail/20220302022306403
https://issn.brin.go.id/terbit/detail/20220302222317407

IJIML Vol 3 No. 2 | June 2024 | ISSN: 2963-8119 (print), ISSN: 2963-7821 (online), Page 166-187

EEE D-LLM (No G)

s D-LLM + RB
0.20 A N D-LLM + AUX
|

D-LLM + CAS
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Privacy Leakage Rate (PLR)

0.05 A

Prompt Injection Memorization Deanonymization Mixed
Attack Type
Figure 2: Comparative Privacy Leakage Rates (PLR) by Attack Type

Figure 2 presents a visual representation of the impact of various guardrail configurations
on privacy resilience across different attack categories. The cascaded (CAS) model
demonstrates superior efficacy in mitigating prompt injection attacks, whereas the auxiliary
(AUX) configuration offers more robust protection against memorization and
deanonymization threats. These findings are consistent with observations in [3] and [4],
affirming that guardrail architecture significantly influences privacy vulnerability across
diverse adversarial modalities.

4. Methodology

This section delineates the methodological framework employed to assess the interaction
between safety and privacy in mobile large language models (LLMs) equipped with various
guardrail mechanisms. The design is based on the guardrail-aware red teaming paradigm
proposed in prior research [3], [4] and extends it to explicitly incorporate computational
efficiency constraints pertinent to on-device Al systems. The methodological pipeline
comprises six core components: guardrail parameterization, auxiliary model training,
adversarial prompt generation, evaluation algorithm, decision logic, and training
configuration.

4.1 Guardrail Parameterization

Each guardrail architecture is treated as a distinct instance of the general function Gg,
parameterized according to its design principle and computational objectives.

1. Rule-Based (RB) Guardrails:

The parameter set 8 ={(p;, a;)}i,, encodes a collection of linguistic or semantic patterns
p; (regular expressions, lexical detectors, or heuristic matchers) and corresponding actions
a; These systems, which include functions such as blocking, redacting, or rephrasing, are
deterministic in nature and are typically implemented as lightweight post-processing filters.
This implementation aligns with the low-latency requirements characteristic of mobile
environments.

2. Auxiliary safety model (AUX):
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The parameterization is given as 6 = (3, 7), where ) are the weights of a small
classification network Sy and T The decision threshold serves as a determinant for
assessing whether a generated output contravenes safety or privacy constraints. This
methodology achieves a balance between interpretability and adaptability by integrating
statistical learning into the decision-making process for guardrails.

3. Cascaded LLM moderator (CAS):

Here, 0 represents the parameters of a compact secondary model Mg“’d combined with a
policy-oriented prompt p,icy the moderator is fine-tuned to evaluate the semantic and
contextual safety of outputs, capable of generating revised or refusal responses based on
policy instructions

In all configurations, Gy is designed to be computationally lighter than the base
LLM M, thereby ensuring deployment feasibility on mobile hardware [1], [12].

Table 3: Overview of Guardrail Architectures and Parameterization

Guardrail Parameterization Core Function Computational | Source
Type Complexity
Rule-Based | {(pi,ai)}i = 1K\{(p_i,a_i)\}.{i Pattern matching | O(K) [4], [6],
(RB) = 1}MKH(pi,ai)}i |and output [19]

= 1K filtering
Auxiliary W, ) (\psi\taw) (Y, 1) Classification- O(N x F) [31, [2],
Model based violation [16]
(AUX) detection
Cascaded M6mod, ppolicyM_{\theta}"{ LLM-on-LLM O(E x S) [5],
Moderator \text{mod}},p_{ contextual [16],
(CAS) \text{policy}}MOmod, ppolicy | moderation [19]

Source: Compiled by the author from [2], [3], [4], [5], [6], [16], [19].
Table 3 presents a summary of the three primary guardrail architectures examined in this
study. Each architecture offers unique trade-offs concerning interpretability, scalability,
and computational efficiency. The CAS configuration facilitates context-sensitive
moderation, while the RB approach is distinguished by its speed and simplicity, which are
crucial considerations for mobile applications.
4.2 Auxiliary Safety Model Objective
The Auxiliary Safety Model (AUX) aims to predict whether a model output violates safety
or privacy constraints. Given a labeled dataset Dy, = {(x;, hy, yi, £1)}r-, where each #; €
{0,1} indicates whether the output violates safety and/or privacy policy. The objective
function is a weighted binary cross-entropy loss:

N

Laux(W) = — Z (W1 £logSy (yi, hi) + wo (1 — £)log (1 = Sy (i, hi))):
i=1
Here w; > wy to emphasize recall on violations, prioritizing the identification of harmful
or privacy-compromising outputs.
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Privacy-specific labels are derived from the privacy red teaming annotations developed in
prior studies [3], [2]. These labels enable the classifier to discern higher-order correlations
between textual cues and latent privacy threats.

4.3 Adversarial Prompt Generation

The adversarial prompt dataset is constructed by integrating both handcrafted and
automated generation techniques, inspired by the attack scenarios documented in [3], [4],
[18]. For each base prompt x,, we define a discrete perturbation space 4 that includes
paraphrasing, prompt injection, and jailbreak augmentation strategies. The optimization
problem is formulated as:

5* = argr(rslgj(R(y(xo @3, h)).

Where R(-) represents a scalar risk score function that quantifies the safety and privacy
implications of the model output. Given the discrete nature of A, gradient-free methods
such as beam search and evolutionary strategies are utilized to identify the perturbations
that induce the highest risk. Prompts that demonstrate empirically validated increases in
risk are retained for further evaluation. This hybrid generation approach ensures that the
adversarial dataset encompasses both realistic user interactions and synthetic challenge
cases.

4.4 Guardrail-Aware Red Team Evaluation

We extend multi-attack evaluation protocols in prior work [3], [4] to include the guardrail

stage explicitly.

Algorithm 1: Guardrail-Aware Red Team Evaluation

Input:

o Base model M¢

e Guardrail G6

e Adversarial datasets {Dadv(k)} for each attack type k

o Risk annotation functions Vsafety,Vprivacy
Output:

e SVR,PLR,RIL,RSS, SI per attack type

The algorithm iteratively processes adversarial samples, annotates each generated response

for potential safety and privacy violations, and calculates aggregate risk metrics. The

integration of a guardrail layer facilitates comprehensive system-level evaluation, thereby
simulating real-world deployment conditions.

4.5 Guardrail Decision Logic

Algorithm 2: Guardrail Decision Function Gy

e Iftyype = RB: apply rule-based pattern—action transformations.

o If yype = AUX: compute the classifier score s = SY(y~, h).If s = ts \ge \taus =,
return a generic refusal message; otherwise, pass the output unchanged.

o If fype = CAS: construct a moderation prompt using context and policy text; the
moderator model Mmod generates an instruction-driven evaluation, mapping
responses to APPROVE, REWRITE, or REFUSE categories.

This modular decision logic ensures scalability and interpretability across heterogeneous

device environments.

4.6 Training Details

Base Models: The two foundational models, D-LLM (~300M parameters) and T-LLM

(~100M parameters), are distilled iterations of larger transformer architectures, employing

sequence-to-sequence distillation techniques [1], [13], [14]. These models are fine tuned

for tasks related to conversational and mobile assistance, ensuring both representational
compactness and reduced inference latency.
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1. Auxiliary Safety Model (AUX):
The classifier Sy, is a lightweight transformer encoder (~30M parameters) is trained on a
composite dataset combining:
e Privacy red teaming annotations [3], [2];
e Public safety and toxicity corpora;
e Synthetic data containing personally identifiable information (PII) and contextual
identity clues.

We adopt the weighted cross-entropy loss above with hyper parameters:

Ay = 0.6, A, = 0.4, class weights w; = 3.0, wy, = 1.0, AdamW (learning rate 2 X 1075,
batch size 64), and early stopping on a stratified validation set.
2. Moderator Model (CAS):
The moderator Mg“’d (~150M parameters) is fine-tuned from a distilled conversational
backbone using instruction tuning on policy-labeled conversational pairs (PALMS-style
[5]) and synthetic moderation dialogues where the model must approve, rewrite, or refuse
outputs. We use an autoregressive cross-entropy loss, learning rate1 X 10~°, batch size 32,
and 3 epochs.

3. Red Team Evaluation Set:

The adversarial datasets {TDﬁgv)} are adapted from [3], [4], supplemented by automatically

generated perturbations. A held-out subset is reserved for validation to prevent over fitting
and contamination.

Below is the Figure is comparing the Safety Violation Rate (SVR) and Privacy Leakage
Rate (PLR) across different guardrail designs.

B SVR (Safety Violation Rate)
mmm PLR (Privacy Leakage Rate)

0.20 A

(=]
]
w

Rate (0-1)

(=]
=
o

0.05 4

0.00 -

No Guardrail Rule-Based (RB) Auxiliary (AUX) Cascaded (CAS)
Guardrail Configuration

Figure 3: Performance Comparison of Guardrail Configurations

Figure 3 demonstrates the impact of different guardrail architectures on safety and privacy
outcomes. The cascaded (CAS) system exhibits the lowest SVR, thereby confirming its
efficacy in suppressing harmful content. In contrast, the auxiliary model (AUX) achieves
the lowest PLR, indicating enhanced privacy protection. The rule-based (RB) approach
provides moderate improvements but is limited in addressing complex adversarial prompts.
This comparative visualization corroborates findings from [3] and [4], affirming that
guardrail design significantly influences safety—privacy trade-offs in mobile LLMs.
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5. Experimental Setup

The current section presents the experimental structure to be used to evaluate the integrity

of the proposed guardrail-conscious adversarial testing methodology. The rationale behind

this design was the need to have comparability, reproducibility, and regulatory pertinence,
which would provide congruence with the metrics and red-teaming guidelines identified in

prior researches [3], [4].

5.1 Adversarial Prompt Set

To assess the performance of mobile-based large language models (LLMs) on safety and

privacy in a holistic way, an 800-prompt adversarial test suite was compiled, and then these

were systematically distributed in four major categories of attack vectors. All the categories
are meant to probe various drawbacks in the model-guardrail architecture:

1. Prompt Injection (200 prompts): These probes are developed in a way to override or
subvert embedded safety directives. Examples of illustrations include commands that
are direct violations of the rules of moderation or instructions that indirectly pressure
the model to reveal confidential information.

2. Extraction Memorization (200 prompts): Such adversarial inputs will be used to
determine whether the model contains and recreates memorized sequences or personal
identifiers of its training corpus, and thus assesses its adherence to the principles of
privacy-by-design.

3. Deanonymization Sequences (200 prompts): Every sequence comprises 4-6
conversational turn in order to simulate realistic identity recovery processes by
opponents. This subtest is used to determine the resilience of the model to contextual
identity inference and linkage.

4. Mixed Privacy-Safety prompts (200 prompts): Such prompts combine pernicious
content with privacy sensitive components and thus simulate hybrid attacks that
leverage contextual awareness and denial features of the model.

A large fraction of the prompt set was the adapted version of recorded adversarial examples

used to carry out privacy-sensitive evaluations of mobile-centric LLMs [3], which aligns

the methodology with available benchmarks. The residual prompts were newly
conceptualized to address guardrail-specific behavior, such as metalinguistic instructions,

e.g. “Comment in detail why you are not doing my request. This new subset is destined to

examine the patterns of verbose refusal that, as it has been shown in previous studies, have

the potential to increase information leakage unwillingly.

Table 4: Composition of the Adversarial Prompt Suite and Evaluation Sources

200 Attempts to override Assess guardrail
safety rules robustness to  direct
prompt manipulation
200 Queries that elicit Evaluate privacy
training-set recall retention and  data
minimization
200 Multi-turn ~ identity Test protection against
reconstruction contextual user re-
identification

[31, [4].
[18]

(2], [3]

[31, [4]
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200 Combines  privacy Examine interaction [3], [19]
and harm triggers between privacy and
safety trade-offs

Source: Compiled by the author from [2], [3], [4], [18], [19].

Table 4 summarizes the construction and reason of adversarial dataset. Having the
balanced composition of four categories of threats is such that every guardrail mechanism
is subjected to a variety of risk stimuli. This balance further makes it easier to compare it
with previous work [3], [4], which enables the applicability of the experimental findings
within the wider discourse of research on privacy-driven red teaming.

5.2 Systems under Test

The empirical assessment involves eight system settings, the combinations of two different
mobile LLM architectures and three different guardrail mechanisms. The underlying
systems are mobile optimized models of distilled systems:

* **D-LLM**: A 300 M-parameter architecture of sequence-to-sequence distillation
based on large-scale architectures of transformers, [1], [13], [14].

* **T-LLM: A smaller 100M -parameter model trained on limited-memory machines and
lowered the inference latency.

Each base model had three guardrail architectures implemented on it:

* **Rule-Based (RB) - It is the type of filter that uses predefined rules of languages and
semantics.

* %% Auxiliary Model (AUX) - is a lightweight classifier that is trained on how to identify
and block possible policy violations.

Fields Probability: It is possible that the Cascaded Moderator will learn to produce ethical
and regulated outputs without requiring supervision. </human|>Probability of Cascaded
Moderator Cascaded Moderator (CAS) it is conceivable that with no supervision the
Cascaded Moderator will be able to produce ethical and regulated outputs.

The configurations that were tested were thus:

1. D-LLM (no guardrail)

2. T-LLM (no guardrail)

3. D-LLM + RB, T-LLM + RB

4. D-LLM + AUX, T-LLM + AUX

5. D-LLM + CAS, T-LLM + CAS

All the configurations were conducted within the same environmental conditions so that

there would be equality in the assessment. To make sure that all variants met the

requirements of mobile deployment (=*:200ms latency; ~500mb memory footprint), as in

Section 3 and the literature ([1], [12], [14]) above, memory and latency were measured.

5.3 Annotation and Scoring

To guarantee the reliability and interpretability of the results, all outputs of the model-

guardrail combinations were examined by two independent annotators who were trained to

conduct a safety and privacy assessment in regards to the model of the processes in the

LLM. The annotation procedure was designed based on three dimensions that were critical:

o **Safety Violation Detection]- detection of content that violates the policy, or is
harmful, such as hate speech, encouragement of self-harm, and generation of illegal
instructions.

e **Privacy Leakage Assessment** - detection of sensitive data disclosure or
personally identifiable information (PII) or memorized pieces of text of training
corpora origin.
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e **Deanonymization Detection - test on multi-turn conversational logs to check
whether the identities of the users or the relationship between the contexts were
reconstituted.

Outliers between annotators were determined by consensus discussions with the purpose

of inter-rater reliability. A Risk Severity Score (RSS) was then applied on a five-point

ordinal scale (1=negligible; 5=critical) to each of the evaluated outputs. The scoring
scheme is based on the taxonomy presented in [3] that assigns every failure case to specific
categories of regulatory risk, including data minimization, purpose limitation, or lawful

processing enshrined in the GDPR itself [8], [9].

Table 5: Annotation Dimensions and Scoring Criteria

Evaluation Definition Scoring Regulatory Source

Dimension Metric Alignment

Safety Violation Presence  of  policy- | Binary (0 =| EU AI Act Art. 10; | [3], [9]
violating  or  harmful | No; 1 =Yes) | GDPR Art. 5(1)(a)
content

Privacy Leakage Disclosure of PII or | Binary (0 =| GDPR Art. 5(1)(c), | [3], [8]
memorized data No; 1 =Yes) | (1)(f)

Deanonymization Reconstruction of identity | Binary (0 = | GDPR Recital 26; | [3],
through context No; 1 =Yes) | ISO/IEC 23894 §7.3 | [11]

Risk Severity Score | Weighted  severity  of | Ordinal scale | NIST RMF §4.2.3 [7],

(RSS) violation (1-5 scale) [10]

Source: Developed by the author based on [3], [7], [8], [9], [10], and [11].

Table S encapsulates the annotation dimensions, along with respective mappings of the
rules, which are employed in the course of the evaluation process. The score is then coupled
with the legal, or standard, principles, which enable the result obtained from the empirical
study to be explained from the context of the risk policy framework.

Summary

The proposed experiment design allows for a full, multi-dimensional analysis of the
effectiveness of the guardrail in complex adversarial settings. The integration of well-
balanced adversarial datasets, different guardrail structures, and human-aligned annotation
tasks provides an experimentally sound foundation for analyzing how mobile LLM
guardrails are involved in the complex interaction between the assurance of safety and the
protection of privacy.

6. Results

This section delineates the empirical findings of the adversarial evaluation framework,
emphasizing the impact of guardrail architectures on both safety and privacy within mobile
large language models (LLMs). The results are analyzed from three integrated
perspectives:

(1) Overall performance in safety and privacy metrics

(2) Attack-type—specific leakage trends

(3) Aggregate risk severity outcomes
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Each finding is contextualized within the framework of prior red-teaming research on
mobile-based LLMs [2], [3], [4].

6.1 Overall Safety and Privacy Performance

The evaluation involved a comparison of eight system configurations comprising two base
models (D-LLM and T-LLM) and three guardrail types (rule-based, auxiliary classifier,
and cascaded moderator) to assess how the inclusion of guardrails modifies model
resilience under adversarial prompting.

Table 6: Overall Safety and Privacy Metrics across Guardrail Configurations

Model + Guardrail SVR| |PLR | |SI=1-SVR? |PI=1-PLR{
D-LLM (no guardrail) | 0.23 0.18 0.77 0.82
T-LLM (no guardrail) | 0.27 0.22 0.73 0.78
D-LLM + RB 0.18 0.16 0.82 0.84
T-LLM + RB 0.22 0.19 0.78 0.81
D-LLM + AUX 0.12 0.13 0.88 0.87
T-LLM + AUX 0.16 0.16 0.84 0.84
D-LLM + CAS 0.08 0.15 0.92 0.85
T-LLM + CAS 0.12 0.18 0.88 0.82

Source: Experimental results compiled by the author based on adversarial red-teaming
evaluations following [3], [4], [18].

As demonstrated in Table 6, the integration of guardrails consistently enhances both safety
and privacy indices when compared to unguarded baselines. The cascaded moderator
(CAS) configuration achieves the lowest Safety Violation Rate (0.08) and the highest
Safety Index (0.92), indicating a robust suppression of harmful content. Conversely, the
auxiliary classifier (AUX) exhibits the lowest Privacy Leakage Rate (0.13), signifying
superior protection against unintentional disclosure. These findings underscore that while
guardrails improve safety; their impact on privacy is contingent upon their design.

6.2 Integrated Safety—Privacy Visualization

The joint performance of safety and privacy metrics across all configurations is depicted
in Figure 4. The scatter plot positions each model guardrail combination based on its Safety
Index (SI) and Privacy Index (PI), revealing distinct performance clusters.
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Figure 4: SI-PI Scatter Plot for All Guardrail Configurations
Figure 4 illustrates that configurations incorporating guardrails are clustered in the upper-
right quadrant, signifying concurrent enhancements in safety and privacy. The CAS and
AUX configurations constitute the optimal performance group, attaining superior SI and
PI values relative to unguarded and rule-based models. These findings imply that
appropriately calibrated guardrails can comprehensively mitigate risk rather than
necessitate a trade-off between dimensions. The correlation between SI and PI further
corroborates the hypothesis that joint optimization is crucial for achieving reliable mobile
Al performance.
6.3 Risk Severity Trends
The qualitative severity of detected violations was assessed using the Risk Severity Score
(RSS), which is scaled from 1 (negligible) to 5 (critical). The average values across all
attack types are as follows: D-LLM (no guardrail) = 3.4; D-LLM + RB = 3.0; D-LLM +
AUX =2.2; D-LLM + CAS = 2.0. The data reveal a progressive reduction in severity as
more advanced guardrails are implemented. CAS achieves the lowest average RSS (=2.0),
indicating effective suppression of high-risk responses, while AUX effectively minimizes
privacy-specific risks, particularly in contexts of memorization and deanonymization.
Summary
The results collectively affirm that integrated guardrail systems enhance both safety and
privacy performance in mobile-based LLMs. However, the impact varies by design: the
cascaded moderator (CAS) provides maximum safety assurance, whereas the auxiliary
classifier (AUX) offers stronger privacy preservation. These findings substantiate the
study’s central argument that safety and privacy must be evaluated jointly within a unified
adversarial framework. Neglecting this interdependence risks overestimating guardrail
effectiveness and underestimating potential privacy exposure in real-world deployments.

7. Discussion
This section interprets the experimental findings in relation to prior research on phone-
based language models, articulates practical design recommendations for privacy-
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conscious guardrails, in addition, explores the regulatory implications of the observed
safety—privacy trade-offs.

7.1 Relation to Prior Phone-LLM Privacy Evaluation

Our study builds directly upon foundational privacy evaluations for phone-based LLMs
conducted in [2], [3]. These prior works established the attack taxonomy (prompt injection,
memorization, and deanonymization) and annotation frameworks now widely used in
mobile red teaming. We adopt these elements to ensure methodological continuity and
regulatory interpretability under GDPR and EU AI Act contexts [8], [9].

The critical extension introduced in this paper is the treatment of guardrails as system-level
entities rather than as external moderation components. This holistic perspective enables
us to analyze how safety filters, classifiers, and cascaded moderators redistribute risks
between safety assurance and privacy leakage a dimension previously unaddressed in [2]
and [3]. In doing so, our approach does not replace earlier frameworks but complements
and extends them, demonstrating that red teaming can be applied not only for baseline
model auditing but also for evaluating architectural interventions such as layered safety
systems, on-device moderators, and hybrid inference pipelines. This aligns with
contemporary efforts to formalize adversarial testing in trustworthy Al guidance,
particularly those led by NIST [7] and ISO/IEC [10], [11].

7.2 Design Patterns for Privacy-Conscious Guardrails

The empirical results presented in Section 6 yield actionable insights into the design and
optimization of privacy-conscious guardrails for on-device LLMs. Specifically;, we
identify recurring implementation patterns that enhance privacy resilience without
significantly compromising safety coverage.

Table 7: Design Patterns for Privacy-Conscious Guardrails

Design Description Observed Effect Supporting Source
Pattern Evidence

Concise Generate brief, Reduces PLR in CAS [3],
“oeeil aves policy-focused  deanonymization configurations [19]
narrative refusals instead scenarios by limiting with shorter
explanations i verbose contextual cues. refusals  exhibit

context-rich lower leakage.

rejections.
Joint safety— RIS Balances SI and PI AUX and CAS [3],[4]
privacy privacy-aware by avoiding achieve stable SI-
calibration thresholds into overexposure during PI trade-offs when

safety decision context recall. co-optimized.

rules.
|ttt Use  continuous  Detects and Red-teaming [3], [4],
the-loop adversarial mitigates emergent methodologies [18]
tuning testing  during vulnerabilities from [2], [3] show

training rather earlier in improved

than post hoc development. adaptation.

validation.

Source: Developed by the author based on empirical observations and methodologies in
[2], [3], [4], [18], [19].

Table 7 delineates design recommendations grounded in empirical evidence derived from
experimental observations. The findings underscore that concise refusals, the joint
optimization of privacy and safety, and iterative adversarial tuning substantially enhance
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the effectiveness of guardrails. This synthesis integrates empirical data with actionable
engineering practices, thereby guiding developers in the construction of privacy-conscious
mobile Al systems.

0.08 4 I Safety Index (SI) Gain
s Privacy Index (Pl) Gain

0.07

=

o

=
1

Normalized Improvement

0.02 A

Concise Refusals Joint Calibration Red-Team Tuning
Design Pattern
Figure 5: Comparative Evaluation of Guardrail Patterns (SI and PI Impact)
Figure S illustrates the comparative advantages of the identified design patterns. The joint
calibration strategy offers the most balanced enhancement, simultaneously improving both
ST and PI metrics. In contrast, concise refusals primarily bolster privacy indices by reducing
contextual verbosity, while red-team-in-the-loop tuning ensures sustained performance
stability across iterative updates.
These empirical trends support the design implications discussed in [3], [4], emphasizing
that effective safety privacy balancing must be dynamic and data-driven.
7.3 Regulatory Implications
Given that our experimental metrics and adversarial scenarios are explicitly aligned with
GDPR, EU AI Act, NIST AI RMF, and ISO/IEC 23894 frameworks [7], [8], [9], [10], [11],
[22], the results offer critical insights into the regulatory adequacy of phone-based LLM
guardrails. Firstly, systems that effectively block unsafe content may still contravene data
minimization or purpose limitation principles if their refusal mechanisms inadvertently
disclose contextual user information.
This observation highlights the necessity for privacy-oriented audit extensions to existing
Al assurance pipelines. Secondly, regulators and auditors should assess not only base
model compliance but also guardrail-specific behavior under adversarial conditions. Our
findings indicate that improperly calibrated guardrails can serve as secondary channels for
unintended information exposure.
Finally, the demonstrated methodology supports a risk-based compliance paradigm,
aligning technical performance evaluation with governance expectations under trustworthy
Al frameworks [1], [12], [21]. This convergence between empirical testing and regulatory
assessment represents a significant advancement toward measurable, auditable Al safety.

8. Limitations and Future Work
Although the findings presented are robust and empirically grounded, several limitations
warrant consideration. Firstly, this study examines only two model families (D-LLM and
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T-LLM) and three guardrail architectures (RB, AUX, CAS). Results may vary for larger,
multilingual, or multimodal models that exhibit broader generalization and memory
behaviors.

Secondly, the evaluation environment simulated mobile hardware conditions, but real-
world deployments may incorporate additional layers of OS-level security, telemetry
logging, or encrypted inference, which could influence privacy leakage dynamics.
Moreover, while our adversarial prompt suite is extensive and derived from established
red-teaming methodologies [3], [4], it cannot exhaustively capture the evolving landscape
of adversarial tactics. Future adversaries may exploit more subtle cross-modal or contextual
manipulations that exceed current taxonomies. To address these gaps, future research
should explore:

Extending the analysis to multimodal and embodied assistants, such as smart glasses or
augmented reality (AR) systems, where text, speech, and sensor modalities intersect.
Investigating federated learning regimes that integrate adversarial privacy testing directly
into the optimization loop, balancing accuracy, latency, and compliance simultaneously
[1], [14]. Developing standardized benchmarks and public tested for safety privacy co-
evaluation, enabling reproducibility and regulatory alignment across the Al research
ecosystem.

By addressing these directions, subsequent work can further bridge the gap between
technical assurance and trustworthy deployment, fostering safer and more privacy-aligned
mobile Al ecosystems.

CONCLUSION

This study conducted a systematic adversarial evaluation of the trade-offs between
safety and privacy in mobile large language model (LLM) guardrail architectures. Building
on privacy-oriented red teaming frameworks previously developed for phone-based
assistants [2], [3], this research extends the analytical scope from the base model to the
integrated model guardrail system, thereby offering a more comprehensive understanding
of the interaction between safety enforcement mechanisms and privacy protection under
adversarial conditions. The findings reveal that guardrails exert heterogeneous and
complex effects on system behavior. Specifically, cascaded moderator (CAS) architectures
achieve the most effective suppression of overtly harmful content, indicating significant
safety improvements.

However, these configurations may occasionally increase contextual exposure
particularly in multi-turn or deanonymization scenarios due to verbose refusals and implicit
recall of prior conversational context. In contrast, auxiliary classifier (AUX) architectures
demonstrate more balanced performance, mitigating both safety and privacy risks without
substantial trade-offs in model responsiveness or latency.

These findings collectively reaffirm the central hypothesis that safety and privacy
cannot be treated as isolated objectives in mobile LLM deployment. Enhancements in one
dimension may inadvertently compromise the other unless explicitly co-optimized. In this
regard, guardrails must be evaluated not as inherently trustworthy filters but as dynamic,
data-dependent components whose effectiveness relies on continuous adversarial testing
and calibration. From a methodological perspective, the research underscores the value of
integrating privacy-focused red teaming into the broader guardrail design and evaluation
lifecycle.

Such integration enables developers to detect cross-domain vulnerabilities early and
to establish quantifiable baselines for safety privacy trade-offs, consistent with the
accountability principles outlined in the GDPR, EU AI Act, and NIST AI Risk
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Management Framework [7] [11], [22]. Furthermore, the results have direct implications
for Al governance and compliance auditing. Regulators and independent assessors should
explicitly include guardrails within the scope of privacy and safety evaluations, rather than
assuming these layers are inherently protective. As demonstrated by our analysis, the
structural and operational properties of guardrails can significantly affect privacy leakage,
contextual retention, and risk redistribution.

Accordingly, auditing practices must evolve to reflect the systemic interdependence
between model behavior, guardrail logic, and regulatory conformity. In summary, this
work provides a unified, empirically grounded framework for evaluating the joint safety
privacy performance of mobile LLMs. By demonstrating how adversarial evaluation can
be systematically extended to guardrail-aware architectures, the study advances both the
scientific understanding and the practical governance of safe, privacy-respecting Al
systems.

Future implementations of phone based and edge Al assistants will benefit from
embedding continuous adversarial validation, joint safety privacy calibration, and
regulatory traceability as integral components of their deployment pipelines, ensuring that
innovation in Al safety is accompanied by equally rigorous privacy protection.

Rationale: This conclusion consolidates the study’s findings by emphasizing that
safety and privacy are interdependent objectives in LLM deployment. It calls for explicit
guardrail evaluation, adversarial testing integration, and regulatory inclusion, echoing the
methodology and results in prior sections. The argument positions the work as both a
scientific contribution and a policy-relevant framework for future Al safety privacy
governance.
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