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INTRODUCTION

Abstract: Vibration and noise in drum-type washing machines are primarily
driven by load variability and mass imbalance, which can amplify resonance
response, reduce user comfort, and accelerate component wear. Reliable
state recognition from vibration signals is therefore essential to enable
adaptive operational strategies and safer spin-up behavior. Objective: This
study aims to develop a physically grounded Al-ready framework for load
classification (empty/dry/wet) and imbalance-risk detection using vibration
measurements, so that operational states can be inferred and mapped into
vibration-mitigation decisions. Methodology: The research used a
quantitative experimental design with controlled operating conditions
(empty, 2 kg dry, 4 kg wet) and two damper configurations (OEM and high-
damper). Vibration responses were characterized using free-decay and FRF-
based identification, producing parameters such as effective mass, natural
frequency, damping ratio, stiffness, damping coefficient, and peak
transmissibility. These parameters were then organized into an Al-ready
label structure to support supervised and semi-supervised learning pipelines.
Findings: The results show a clear mechanical signature for load
separability, with natural frequency decreasing monotonically as load
increases (2.95 Hz — 2.77 Hz — 2.63 Hz). Under the same wet load, the
high-damper configuration substantially increased the damping coefficient
(190 — 235 N-s/m) and reduced peak transmissibility (2.00 — 1.45),
indicating a strong reduction in resonance amplification and transmitted
vibration. Implications: The findings support the use of vibration-based
state recognition as an input to adaptive spin control, enabling conservative
decision rules to minimize resonance dwell and reduce vibration
transmission without requiring major suspension redesign. The framework
also facilitates scalable model development when labeled data are limited by
leveraging physically interpretable anchors for validation. Originality: This
study contributes a novel integration of repeatable vibration identification
(free-decay/FRF/spin-up) with an Al-ready state and labeling framework for
load classification and imbalance-risk inference, providing an interpretable
bridge between vibration physics and supervised/semi-supervised learning
for engineering deployment.

Keywords: Load Classification; Imbalance Detection; Vibration Analysis;
Semi-Supervised Learning; Transmissibility; Washing Machine Dynamics

Modern rotating systems in engineering ranging from industrial rotors to household

drum washer—dryers face a recurring operational challenge: mass imbalance and uncertain
load conditions that amplify vibration, noise, and mechanical stress, and can shorten

component life while reducing user comfort and product reliability (Martinello et al., 2021;
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Joko & Honda, 2021; Shimizu et al., 2022). In appliance-scale systems, this problem is
intensified by highly variable real-world loads (fabric type, moisture, distribution, and
inertia) that change from cycle to cycle, making stable operation and consistent
performance difficult without adaptive intelligence (Susto et al., 2019; Zambonin et al.,
2019; Choi et al., 2025).

A substantial body of engineering research has established physics-based modeling
and repeatable experimental identification to characterize washing-machine drum
vibrations under unbalance excitation. Recent work in Jurnal Ilmiah Teknik provides a
replicable SDOF-based framework that integrates free-decay, FRF impact testing, and
operational spin-up to estimate key parameters (natural frequency, damping ratio, stiffness,
damping coefficient) and to quantify transmissibility, with explicit emphasis on safety and
reproducible sensor placement at the drum housing and chassis (Ramadhan & Muchlis,
2025). Complementary appliance-oriented studies have also reported validated dynamic
models and experimental analyses of top-loader or drum systems under unbalance mass,
supporting parameter identification and transient behavior evaluation for operational safety
(Jeong et al., 2023), while damper-system modeling has been used to analyze transient
vibration reduction mechanisms in practical washing-machine configurations (Kim et al.,
2019). In addition, dynamic models have been proposed to prevent tub collision during
transient states, further highlighting the importance of accurately capturing resonance
crossing and transmissibility pathways in real operation (Sanchez-Tabuenca et al., 2020).
Collectively, these studies provide strong physical insight and measurement procedures,
yet they still leave an implementation gap: the models and identified parameters are rarely
translated into a scalable, real-time state-recognition layer (e.g., load type and imbalance
level) that can be automatically inferred from operational vibration signals to trigger
adaptive control decisions.

A second research stream focuses on Al-supported optimization and reinforcement
learning for vibration/noise reduction in washer dynamics and spin algorithms. For
example, Q-learning has been used to reduce noise/vibration during washing-machine
operation by learning control actions from interaction data (Shimizu et al., 2022). In
addition, robust optimization frameworks have been reported to jointly reduce spin time
and vibration under uncertainty in the laundry state (In et al., 2024), and Bayesian-
optimization workflows have been proposed to accelerate derivation of dehydration
unbalance control specifications (Choi et al., 2025). Even so, many of these efforts still rely
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on task-specific experiments or simulations, and they do not fully resolve the labeling
bottleneck for large-scale deployment across diverse loads and operating regimes.

A third body of literature addresses data-driven condition monitoring and
fault/imbalance identification in rotating machinery using vibration (and sometimes multi-
modal) signals. Reviews highlight rapid progress in intelligent fault diagnosis pipelines,
but also emphasize persistent gaps in domain adaptation, compound conditions, data
fusion, and reliable deployment under realistic noise and variability (Das et al., 2023). At
the same time, semi-supervised learning has matured as a general paradigm to leverage
unlabeled data (van Engelen & Hoos, 2020; Yang et al., 2023), and semi-supervised
diagnosis methods have shown strong performance on vibration-based tasks when labeled
data are scarce (Li et al., 2019). Related work also demonstrates that combining vibration
with other sensing channels can improve robustness under limited labels (Sun et al., 2025).
However, integrating imbalance detection with load classification in one coherent learning
framework (supervised vs. semi-supervised) remains underexplored for appliance-like
rotating systems where “load type” is a key operational variable rather than a fault label.

Based on these gaps, this study aims to develop and justify an Al-based approach for
imbalance detection and load classification in rotating-load systems (with an emphasis on
drum-like dynamics), by comparing supervised learning pipelines (trained on labeled
vibration segments) against semi-supervised alternatives that exploit abundant unlabeled
operational data. The research is positioned to connect appliance-oriented load inference
(e.g., fabric typology and moisture estimation) with imbalance estimation/control needs,
using learning architectures that are feasible for embedded implementation and scalable
data acquisition (Susto et al., 2019; Zambonin et al., 2019; Martinello et al., 2021).

The core argument is that load variability (type, inertia, distribution) and label scarcity
jointly explain why purely model-based or purely supervised solutions can underperform
in the field; therefore, a semi-supervised strategy that learns stable representations from
unlabeled vibration (and optionally multi-modal) streams should improve generalization
while reducing dependence on expensive labeling campaigns (van Engelen & Hoos, 2020;
Yang et al., 2023; Li et al., 2019). In line with evidence that learning-based methods can
reduce vibration/noise through adaptation (Shimizu et al., 2022) and handle uncertainty via
robust optimization (In et al., 2024), this study hypothesizes that semi-supervised

imbalance detection combined with load-class inference will yield higher robustness across
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operating regimes than a supervised-only baseline, while remaining practical for

engineering deployment.

RESEARCH METHOD

The unit of analysis is the vibration response of a washing-machine drum—suspension
system during spin operation. Vibration is measured using accelerometers mounted at two
locations: (1) drum housing/tub and (2) chassis/frame to capture both local vibration and
transmitted vibration paths (Ramadhan & Muchlis, 2025). The analysis targets two
engineering labels: load class (e.g., empty/dry/wet) and imbalance level (e.g.,
low/medium/high), inferred from operational vibration signatures.

This study employs a quantitative experimental design because the objective is to
measure, model, and classify vibration patterns under controlled engineering conditions
and to evaluate classification performance statistically. The experimental structure enables
systematic variation of operating factors (load condition, damper configuration, speed
profile) and supports repeatability, consistent with prior drum vibration characterization
that combines free-decay/FRF/spin-up principles for parameter grounding (Ramadhan &
Muchlis, 2025; Jeong et al., 2023). Supervised learning is used to learn mappings from
labeled vibration segments to operational states, while semi-supervised learning is used to
reduce dependence on extensive labeling under real operational variability (van Engelen &
Hoos, 2020).

Primary data consist of time-series acceleration signals recorded during spin-up and
steady spin phases for each experimental condition. Labeled data are obtained from
controlled runs where load class is known by design. Imbalance labels are defined using a
severity proxy derived from vibration response near resonance (e.g., peak RMS/peak
amplitude or transmissibility-related indicators), reflecting that unbalance excitation
amplifies vibration magnitude and near-resonant response (Jeong et al., 2023). Additional
unlabeled data are collected from operational runs representing broader variability (e.g.,
user-like distributions, mixed loading) to support semi-supervised learning.

Vibration data are acquired using a fixed sampling rate sufficient to represent the
dominant vibration band during spin (anti-aliasing applied when required). Sensor
placement follows a reproducible scheme at the drum housing and chassis to ensure

comparability across trials (Ramadhan & Muchlis, 2025). Each run logs (i) acceleration
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channels, and (ii) rotational-speed profile (if available from controller/tachometer). Signals
are preprocessed using detrending and band-limited filtering to reduce drift and high-
frequency noise. The signals are segmented into overlapping windows (e.g., 1-2 s with
50% overlap). From each window, feature vectors are extracted using time-domain (RMS,
peak-to-peak, crest factor, kurtosis) and frequency-domain descriptors (dominant
frequency, band power around resonance, spectral centroid). Multi-sensor features include
channel energy ratios and coherence-inspired similarity indicators to represent
transmissibility pathways.

For the supervised baseline, models such as SVM (RBF) and gradient-boosted trees
are trained to classify load class and imbalance level from engineered features. For the
semi-supervised approach, a self-training/pseudo-labeling strategy is applied: an initial
supervised model assigns high-confidence pseudo-labels to unlabeled windows, which are
then iteratively added to the training set with confidence thresholds to control error
propagation (van Engelen & Hoos, 2020; Yang et al., 2023). Model evaluation uses
stratified splits and cross-condition tests (e.g., train on one damper configuration and test
on another) to assess generalization. Performance metrics include accuracy, macro-F1, and
confusion matrices for both tasks, plus robustness checks under domain shifts (e.g.,
different load mixes). The engineering utility is assessed by mapping predicted states to a
decision layer (e.g., conservative spin-up rules for high imbalance), aligned with prior
control-oriented work that reduces vibration/noise through learning or robust optimization

(Shimizu et al., 2022; In et al., 2024).

RESULT AND DISCUSSION
Load-dependent dynamic characteristics

The first set of results describes how the drum—suspension dynamics change when the
operating load changes. Using free-decay and FRF-based identification, the system
response was quantified under four conditions (Empty—OEM, 2 kg dry—OEM, 4 kg wet—
OEM, and 4 kg wet—High-damper). The extracted parameters effective mass (m), natural
frequency (f,), damping ratio ({), stiffness (k), damping coefficient (c), and peak
transmissibility (7) are presented to show whether the load states produce separable

mechanical signatures that can later support Al-based load classification.
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Table 2. Calculated dynamic quantities of washing machine drum vibration

Test condition m (kg) f, (Hz) { (Free-decay)  (FRF) k (N/m) ¢ (N's/m) T (-)
Empty, OEM 120 295 0.159 0.203 4115 179 1.63
2 kg dry, OEM 14.0 2.77 0.150 0.216 4265 183 1.76
4 kg wet, OEM 16.0 2.63 0.143 0.231 4363 190 2.00
4 kg wet, High-damper 16.0 2.63  0.180 0.223 4363 235 1.45

Table 2 shows that increasing load systematically shifts the system’s natural
frequency. The natural frequency decreases from 2.95 Hz (empty) to 2.77 Hz (2 kg dry)
and to 2.63 Hz (4 kg wet), which is consistent with a higher effective mass producing
slower oscillation. At the same time, stiffness remains within a narrow range (~4.1-4.4
kN/m), suggesting that most of the response variation across load states is driven by mass
and damping rather than by changes in spring behavior. The wet OEM condition also
produces the highest peak transmissibility (T = 2.00), indicating that wet loading creates
the greatest resonance amplification risk among the tested cases. To make the load-driven
frequency shift easier to interpret visually, the natural frequency trend across conditions is
plotted in Figure 2.

Natural Frequency Across Conditions (from Table 2)
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Figure 2. Natural frequency across conditions

Figure 2 emphasizes a clear monotonic drop in f, as load increases, while the high-
damper wet case remains at the same f, as wet OEM (2.63 Hz), confirming that changing
damping does not shift natural frequency in these tests. Overall, these results provide an

interpretable mechanical basis for load-class separability: different load states leave
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consistent fingerprints in the dynamic parameters, especially f, and resonance-related

response.

Damper effect on resonance amplification under wet load

The second set of results isolates the influence of damping by comparing the two wet
cases: 4 kg wet-OEM and 4 kg wet-High-damper. Because both cases share the same
effective mass (16 kg) and stiffness (4363 N/m), any difference in resonance response is
primarily attributable to damping changes. The key expectation is that higher damping
should reduce resonance amplification and therefore lower vibration transmission to the
chassis.

The damping coefficient trend across all conditions is shown in Figure 3 to highlight
how strongly the high-damper configuration modifies c relative to the OEM configuration.

Damping Coefficient Across Conditions (from Table 2)
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Figure 3. Damping coefficient across conditions

Figure 3 shows that damping increases gradually from empty to wet OEM (179 —
183 — 190 N-s/m), then rises sharply in the wet high-damper condition (235 N-s/m). This
confirms that the damper modification produces a substantial increase in damping capacity
rather than a minor perturbation. From an engineering standpoint, this is important because
higher damping is expected to reduce resonance peaks without altering stiffness or mass.
To directly reflect the effect of damping on vibration transmission, the peak transmissibility

values are visualized in Figure 4.
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Peak Transmissibility Across Conditions (from Table 2)
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Figure 4. Peak transmissibility across conditions

Figure 4 shows that peak transmissibility increases with load up to the wet OEM
case (1.63 — 1.76 — 2.00), indicating that the wet load produces the most critical
resonance amplification. However, with the high-damper configuration under the same wet
load, peak transmissibility decreases markedly from 2.00 to 1.45. This demonstrates that
increasing damping significantly reduces resonance amplification and the vibration
transmitted to the frame, providing a clear mechanical justification for mitigation strategies

that combine hardware damping design and operational control.

Al-ready label structure grounded in measurable physical anchors

The third result connects the mechanical findings to the feasibility of the proposed Al
approach. Because the experiments were conducted under controlled conditions, the dataset
naturally provides reliable labels for supervised learning (load class and damper
configuration). More importantly, the measured physical indicators in Table 2 especially
the monotonic shift in f, with load and the clear damping/transmissibility differences
between wet OEM and wet high-damper serve as “physical anchors” that can validate label
consistency and support semi-supervised expansion when unlabeled operational data are
introduced.

Based on the trends observed in Table 2 and Figures 2—4, Table 3 proposes a practical
label mapping that a classifier can learn, along with a physically interpretable proxy for

imbalance severity using peak transmissibility.
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Table 3. Proposed Al label scheme derived from controlled experiments

Experimental condition Load class Damper label Imbalance severity proxy

Empty, OEM Empty OEM Low (baseline)

2 kg dry, OEM Dry OEM Medium (higher response vs empty)
4 kg wet, OEM Wet OEM High (highest T =2.00)

4 kg wet, High-damper Wet High-damper Reduced-high (T lowered to 1.45)

Table 3 summarizes how the controlled experiments can directly populate a supervised
training set while keeping the labels mechanically defensible. In a semi-supervised setting,
unlabeled operational windows can be pseudo-labeled and then screened using the same
anchors (e.g., checking whether predicted load increases correspond to a plausible
downward shift in f,, and whether high-risk states align with elevated 7). In this way, the
results do not only report mechanical behavior, but also demonstrate that the dataset
structure is suitable for building and scaling AI models with interpretable validation criteria
an essential requirement for deployment in engineering systems where reliability and safety

matter.

DISCUSSION

The results demonstrate that the washing-machine drum—suspension system exhibits
consistent, measurable dynamic shifts across load and damper conditions, and these shifts
are directly relevant to Al-based load classification and imbalance-risk detection. As shown
in Table 2 and Figures 2—4, increasing load reduces the natural frequency (fi: 2.95 — 2.77
— 2.63 Hz) and increases resonance amplification risk under wet loading (peak T rising to
2.00). Meanwhile, increasing damping through a high-damper configuration substantially
reduces peak transmissibility (2.00 — 1.45) without changing f;, indicating that mitigation
can be achieved by damping enhancement rather than stiffness redesign. These patterns
provide the mechanical basis for using vibration signals as a reliable input for AI models,
because the operating “states” (load and damping conditions) are not abstract labels they
are expressed in the system’s dynamics in an interpretable way (Ramadhan & Muchlis,
2025; Sanchez-Tabuenca et al., 2020).

The “why” behind these trends is consistent with classical vibration theory and the
SDOF interpretation used in drum systems. When effective mass increases, the natural
frequency decreases, which shifts resonance behavior and changes the vibration response

observable at the drum housing and chassis. At the same time, damping governs resonance
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peak height: increasing ¢ lowers the peak transmissibility and reduces the amount of
vibration transmitted to the frame. This explains why the wet OEM condition is the most
critical in the dataset: wet loading increases effective mass and tends to intensify resonance
amplification (Jeong et al., 2023), and without additional damping, the peak response
becomes larger. Conversely, high damping produces a mechanically safer state by
suppressing resonance even under the same wet load, which is reflected in the marked
reduction of T and the increase in ¢ (Kim et al., 2019).

When compared with prior work, the contribution of these results becomes clearer.
Studies focusing on experimental characterization and modeling have emphasized
repeatable procedures (free-decay, FRF, operational spin-up) and parameter identification
to describe the drum dynamics and resonance risk (Ramadhan & Muchlis, 2025; Jeong et
al., 2023; Sanchez-Tabuenca et al., 2020). Our results are consistent with that stream, but
extend it by translating the identified parameters into an Al-ready state structure: (i) load
classes anchored by monotonic f; shifts and (ii) imbalance-risk proxies anchored by peak
transmissibility trends. In the control and optimization stream, learning-based and robust
approaches have been proposed to reduce vibration/noise and balance spin time versus
vibration under uncertainty (Shimizu et al., 2022; In et al., 2024). The novelty here is not
to replace those controllers, but to provide a deployable state-recognition layer that can
feed any control policy (rule-based, RL, or robust optimization) with explicit, interpretable
state awareness. This bridging role is particularly valuable because real-world laundry
states are uncertain and variable, and state inference is often the missing link between
vibration physics and adaptive control.

Beyond technical interpretation, the broader implication is that appliance-scale
vibration problems can benefit from a hybrid engineering—Al logic: physical modeling
provides guardrails and interpretability, while supervised and semi-supervised learning
provide scalability when operational data are abundant but labels are limited. Semi-
supervised learning is especially relevant in this context because it reduces dependence on
costly labeling campaigns while still allowing validation through physical anchors such as
f, trends and resonance indicators (van Engelen & Hoos, 2020; Yang et al., 2023).
However, this approach also has potential dysfunctions: misclassification of high-risk
states could lead to unsafe spin profiles. For that reason, the decision layer should adopt

conservative policies (confidence thresholds, fallback modes, and safety-limited ramp
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rates), consistent with the idea that operational control should prioritize safety when
resonance crossing is unavoidable.

From an action-oriented engineering standpoint, the findings support a practical
implementation roadmap. First, integrate the classifier outputs (load class and imbalance-
risk proxy) into an adaptive spin-up strategy: for predicted high-risk states (e.g., wet OEM-
like behavior), adjust ramp rate to reduce time spent near critical speed, apply conservative
speed limits, or trigger redistribution steps when available. Second, embed data-quality
checks before classification (window validation, outlier filtering), using cross-method
consistency (free-decay vs FRF-informed bounds) as a screening mechanism to reduce
pseudo-label errors during semi-supervised expansion. Third, use performance evaluation
not only through accuracy/F1, but also through engineering metrics peak vibration
reduction and avoidance of resonance dwell so that the Al system is judged by operational
value rather than classification alone (Shimizu et al., 2022; In et al., 2024).

Overall, the discussion indicates that the study’s contribution is both mechanistic and
methodological: it validates load/damper-driven dynamic shifts in a repeatable way and
shows how these shifts can be operationalized into an Al-ready framework that supports
scalable learning and safer adaptive operation. The next logical step is to implement the
supervised and semi-supervised pipelines on windowed vibration data and evaluate cross-
condition generalization, particularly under real operational variability where unlabeled

data dominate (van Engelen & Hoos, 2020; Yang et al., 2023).

CONCLUSION

This study characterized the dynamic behavior of a drum-type washing machine under
controlled load and damper conditions and translated the findings into an Al-ready
framework for load classification and imbalance-risk detection. The main lesson from the
results is that load variability produces consistent mechanical signatures most clearly a
monotonic decrease in natural frequency as the load increases (empty — dry — wet) while
damping enhancement substantially reduces resonance amplification, as evidenced by the
marked reduction in peak transmissibility when using a high-damper configuration under
the same wet load. These results indicate that vibration-based state recognition is
mechanically meaningful and can be used to support safer operational decisions during

spin-up.
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Scientifically, the study contributes a physically grounded dataset structure and
labeling logic that can underpin supervised and semi-supervised learning in engineering
applications. The contribution is not only the identified parameters (e.g., fi, {, ¢, and T),
but also the demonstration that these parameters can serve as interpretable anchors for
defining load classes and imbalance severity proxies. This strengthens the bridge between
classical vibration characterization (free-decay/FRF/spin-up) and modern Al adoption by
providing transparent state definitions that can feed adaptive control strategies.

This research is limited by the scope of tested conditions and the simplified
interpretation of the drum—suspension as a dominant-mode system, which may not capture
multi-mode effects, nonlinearities, or broader machine-to-machine variability. In addition,
the imbalance severity proxy relies on resonance-related transmissibility trends rather than
direct measurement of unbalance mass distribution, which may introduce uncertainty when
generalizing to uncontrolled real-world laundry mixtures. Future work should validate
cross-machine generalization, expand operational scenarios, and implement the supervised
and semi-supervised pipelines on windowed vibration signals with uncertainty-aware

decision thresholds for safe deployment.
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