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INTRODUCTION 

Modern rotating systems in engineering ranging from industrial rotors to household 

drum washer–dryers face a recurring operational challenge: mass imbalance and uncertain 

load conditions that amplify vibration, noise, and mechanical stress, and can shorten 

component life while reducing user comfort and product reliability (Martinello et al., 2021; 
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Joko & Honda, 2021; Shimizu et al., 2022). In appliance-scale systems, this problem is 

intensified by highly variable real-world loads (fabric type, moisture, distribution, and 

inertia) that change from cycle to cycle, making stable operation and consistent 

performance difficult without adaptive intelligence (Susto et al., 2019; Zambonin et al., 

2019; Choi et al., 2025). 

A substantial body of engineering research has established physics-based modeling 

and repeatable experimental identification to characterize washing-machine drum 

vibrations under unbalance excitation. Recent work in Jurnal Ilmiah Teknik provides a 

replicable SDOF-based framework that integrates free-decay, FRF impact testing, and 

operational spin-up to estimate key parameters (natural frequency, damping ratio, stiffness, 

damping coefficient) and to quantify transmissibility, with explicit emphasis on safety and 

reproducible sensor placement at the drum housing and chassis (Ramadhan & Muchlis, 

2025). Complementary appliance-oriented studies have also reported validated dynamic 

models and experimental analyses of top-loader or drum systems under unbalance mass, 

supporting parameter identification and transient behavior evaluation for operational safety 

(Jeong et al., 2023), while damper-system modeling has been used to analyze transient 

vibration reduction mechanisms in practical washing-machine configurations (Kim et al., 

2019). In addition, dynamic models have been proposed to prevent tub collision during 

transient states, further highlighting the importance of accurately capturing resonance 

crossing and transmissibility pathways in real operation (Sánchez-Tabuenca et al., 2020). 

Collectively, these studies provide strong physical insight and measurement procedures, 

yet they still leave an implementation gap: the models and identified parameters are rarely 

translated into a scalable, real-time state-recognition layer (e.g., load type and imbalance 

level) that can be automatically inferred from operational vibration signals to trigger 

adaptive control decisions. 

A second research stream focuses on AI-supported optimization and reinforcement 

learning for vibration/noise reduction in washer dynamics and spin algorithms. For 

example, Q-learning has been used to reduce noise/vibration during washing-machine 

operation by learning control actions from interaction data (Shimizu et al., 2022). In 

addition, robust optimization frameworks have been reported to jointly reduce spin time 

and vibration under uncertainty in the laundry state (In et al., 2024), and Bayesian-

optimization workflows have been proposed to accelerate derivation of dehydration 

unbalance control specifications (Choi et al., 2025). Even so, many of these efforts still rely 
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on task-specific experiments or simulations, and they do not fully resolve the labeling 

bottleneck for large-scale deployment across diverse loads and operating regimes.  

A third body of literature addresses data-driven condition monitoring and 

fault/imbalance identification in rotating machinery using vibration (and sometimes multi-

modal) signals. Reviews highlight rapid progress in intelligent fault diagnosis pipelines, 

but also emphasize persistent gaps in domain adaptation, compound conditions, data 

fusion, and reliable deployment under realistic noise and variability (Das et al., 2023). At 

the same time, semi-supervised learning has matured as a general paradigm to leverage 

unlabeled data (van Engelen & Hoos, 2020; Yang et al., 2023), and semi-supervised 

diagnosis methods have shown strong performance on vibration-based tasks when labeled 

data are scarce (Li et al., 2019). Related work also demonstrates that combining vibration 

with other sensing channels can improve robustness under limited labels (Sun et al., 2025). 

However, integrating imbalance detection with load classification in one coherent learning 

framework (supervised vs. semi-supervised) remains underexplored for appliance-like 

rotating systems where “load type” is a key operational variable rather than a fault label.  

Based on these gaps, this study aims to develop and justify an AI-based approach for 

imbalance detection and load classification in rotating-load systems (with an emphasis on 

drum-like dynamics), by comparing supervised learning pipelines (trained on labeled 

vibration segments) against semi-supervised alternatives that exploit abundant unlabeled 

operational data. The research is positioned to connect appliance-oriented load inference 

(e.g., fabric typology and moisture estimation) with imbalance estimation/control needs, 

using learning architectures that are feasible for embedded implementation and scalable 

data acquisition (Susto et al., 2019; Zambonin et al., 2019; Martinello et al., 2021).  

The core argument is that load variability (type, inertia, distribution) and label scarcity 

jointly explain why purely model-based or purely supervised solutions can underperform 

in the field; therefore, a semi-supervised strategy that learns stable representations from 

unlabeled vibration (and optionally multi-modal) streams should improve generalization 

while reducing dependence on expensive labeling campaigns (van Engelen & Hoos, 2020; 

Yang et al., 2023; Li et al., 2019). In line with evidence that learning-based methods can 

reduce vibration/noise through adaptation (Shimizu et al., 2022) and handle uncertainty via 

robust optimization (In et al., 2024), this study hypothesizes that semi-supervised 

imbalance detection combined with load-class inference will yield higher robustness across 
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operating regimes than a supervised-only baseline, while remaining practical for 

engineering deployment. 

 
 
RESEARCH METHOD 

The unit of analysis is the vibration response of a washing-machine drum–suspension 

system during spin operation. Vibration is measured using accelerometers mounted at two 

locations: (1) drum housing/tub and (2) chassis/frame to capture both local vibration and 

transmitted vibration paths (Ramadhan & Muchlis, 2025). The analysis targets two 

engineering labels: load class (e.g., empty/dry/wet) and imbalance level (e.g., 

low/medium/high), inferred from operational vibration signatures. 

This study employs a quantitative experimental design because the objective is to 

measure, model, and classify vibration patterns under controlled engineering conditions 

and to evaluate classification performance statistically. The experimental structure enables 

systematic variation of operating factors (load condition, damper configuration, speed 

profile) and supports repeatability, consistent with prior drum vibration characterization 

that combines free-decay/FRF/spin-up principles for parameter grounding (Ramadhan & 

Muchlis, 2025; Jeong et al., 2023). Supervised learning is used to learn mappings from 

labeled vibration segments to operational states, while semi-supervised learning is used to 

reduce dependence on extensive labeling under real operational variability (van Engelen & 

Hoos, 2020). 

Primary data consist of time-series acceleration signals recorded during spin-up and 

steady spin phases for each experimental condition. Labeled data are obtained from 

controlled runs where load class is known by design. Imbalance labels are defined using a 

severity proxy derived from vibration response near resonance (e.g., peak RMS/peak 

amplitude or transmissibility-related indicators), reflecting that unbalance excitation 

amplifies vibration magnitude and near-resonant response (Jeong et al., 2023). Additional 

unlabeled data are collected from operational runs representing broader variability (e.g., 

user-like distributions, mixed loading) to support semi-supervised learning. 

Vibration data are acquired using a fixed sampling rate sufficient to represent the 

dominant vibration band during spin (anti-aliasing applied when required). Sensor 

placement follows a reproducible scheme at the drum housing and chassis to ensure 

comparability across trials (Ramadhan & Muchlis, 2025). Each run logs (i) acceleration 
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channels, and (ii) rotational-speed profile (if available from controller/tachometer). Signals 

are preprocessed using detrending and band-limited filtering to reduce drift and high-

frequency noise. The signals are segmented into overlapping windows (e.g., 1–2 s with 

50% overlap). From each window, feature vectors are extracted using time-domain (RMS, 

peak-to-peak, crest factor, kurtosis) and frequency-domain descriptors (dominant 

frequency, band power around resonance, spectral centroid). Multi-sensor features include 

channel energy ratios and coherence-inspired similarity indicators to represent 

transmissibility pathways. 

For the supervised baseline, models such as SVM (RBF) and gradient-boosted trees 

are trained to classify load class and imbalance level from engineered features. For the 

semi-supervised approach, a self-training/pseudo-labeling strategy is applied: an initial 

supervised model assigns high-confidence pseudo-labels to unlabeled windows, which are 

then iteratively added to the training set with confidence thresholds to control error 

propagation (van Engelen & Hoos, 2020; Yang et al., 2023). Model evaluation uses 

stratified splits and cross-condition tests (e.g., train on one damper configuration and test 

on another) to assess generalization. Performance metrics include accuracy, macro-F1, and 

confusion matrices for both tasks, plus robustness checks under domain shifts (e.g., 

different load mixes). The engineering utility is assessed by mapping predicted states to a 

decision layer (e.g., conservative spin-up rules for high imbalance), aligned with prior 

control-oriented work that reduces vibration/noise through learning or robust optimization 

(Shimizu et al., 2022; In et al., 2024). 

 

RESULT AND DISCUSSION 

Load-dependent dynamic characteristics 

The first set of results describes how the drum–suspension dynamics change when the 

operating load changes. Using free-decay and FRF-based identification, the system 

response was quantified under four conditions (Empty–OEM, 2 kg dry–OEM, 4 kg wet–

OEM, and 4 kg wet–High-damper). The extracted parameters effective mass (m), natural 

frequency (fₙ), damping ratio (ζ), stiffness (k), damping coefficient (c), and peak 

transmissibility (T) are presented to show whether the load states produce separable 

mechanical signatures that can later support AI-based load classification. 
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Table 2. Calculated dynamic quantities of washing machine drum vibration 

Test condition m (kg) fₙ (Hz) ζ (Free-decay) ζ (FRF) k (N/m) c (N·s/m) T (–) 
Empty, OEM 12.0 2.95 0.159 0.203 4115 179 1.63 
2 kg dry, OEM 14.0 2.77 0.150 0.216 4265 183 1.76 
4 kg wet, OEM 16.0 2.63 0.143 0.231 4363 190 2.00 
4 kg wet, High-damper 16.0 2.63 0.180 0.223 4363 235 1.45 
 

Table 2 shows that increasing load systematically shifts the system’s natural 

frequency. The natural frequency decreases from 2.95 Hz (empty) to 2.77 Hz (2 kg dry) 

and to 2.63 Hz (4 kg wet), which is consistent with a higher effective mass producing 

slower oscillation. At the same time, stiffness remains within a narrow range (≈4.1–4.4 

kN/m), suggesting that most of the response variation across load states is driven by mass 

and damping rather than by changes in spring behavior. The wet OEM condition also 

produces the highest peak transmissibility (T = 2.00), indicating that wet loading creates 

the greatest resonance amplification risk among the tested cases. To make the load-driven 

frequency shift easier to interpret visually, the natural frequency trend across conditions is 

plotted in Figure 2. 

 
Figure 2. Natural frequency across conditions 

 

Figure 2 emphasizes a clear monotonic drop in fₙ as load increases, while the high-

damper wet case remains at the same fₙ as wet OEM (2.63 Hz), confirming that changing 

damping does not shift natural frequency in these tests. Overall, these results provide an 

interpretable mechanical basis for load-class separability: different load states leave 
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consistent fingerprints in the dynamic parameters, especially fₙ and resonance-related 

response. 

 

Damper effect on resonance amplification under wet load 

The second set of results isolates the influence of damping by comparing the two wet 

cases: 4 kg wet–OEM and 4 kg wet–High-damper. Because both cases share the same 

effective mass (16 kg) and stiffness (4363 N/m), any difference in resonance response is 

primarily attributable to damping changes. The key expectation is that higher damping 

should reduce resonance amplification and therefore lower vibration transmission to the 

chassis. 

The damping coefficient trend across all conditions is shown in Figure 3 to highlight 

how strongly the high-damper configuration modifies c relative to the OEM configuration. 

 
Figure 3. Damping coefficient across conditions 

 

Figure 3 shows that damping increases gradually from empty to wet OEM (179 → 

183 → 190 N·s/m), then rises sharply in the wet high-damper condition (235 N·s/m). This 

confirms that the damper modification produces a substantial increase in damping capacity 

rather than a minor perturbation. From an engineering standpoint, this is important because 

higher damping is expected to reduce resonance peaks without altering stiffness or mass. 

To directly reflect the effect of damping on vibration transmission, the peak transmissibility 

values are visualized in Figure 4. 
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Figure 4. Peak transmissibility across conditions 

 

Figure 4 shows that peak transmissibility increases with load up to the wet OEM 

case (1.63 → 1.76 → 2.00), indicating that the wet load produces the most critical 

resonance amplification. However, with the high-damper configuration under the same wet 

load, peak transmissibility decreases markedly from 2.00 to 1.45. This demonstrates that 

increasing damping significantly reduces resonance amplification and the vibration 

transmitted to the frame, providing a clear mechanical justification for mitigation strategies 

that combine hardware damping design and operational control. 

 

AI-ready label structure grounded in measurable physical anchors 

The third result connects the mechanical findings to the feasibility of the proposed AI 

approach. Because the experiments were conducted under controlled conditions, the dataset 

naturally provides reliable labels for supervised learning (load class and damper 

configuration). More importantly, the measured physical indicators in Table 2 especially 

the monotonic shift in fₙ with load and the clear damping/transmissibility differences 

between wet OEM and wet high-damper serve as “physical anchors” that can validate label 

consistency and support semi-supervised expansion when unlabeled operational data are 

introduced. 

Based on the trends observed in Table 2 and Figures 2–4, Table 3 proposes a practical 

label mapping that a classifier can learn, along with a physically interpretable proxy for 

imbalance severity using peak transmissibility. 
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Table 3. Proposed AI label scheme derived from controlled experiments 

Experimental condition Load class Damper label Imbalance severity proxy 
Empty, OEM Empty OEM Low (baseline) 
2 kg dry, OEM Dry OEM Medium (higher response vs empty) 
4 kg wet, OEM Wet OEM High (highest T = 2.00) 
4 kg wet, High-damper Wet High-damper Reduced-high (T lowered to 1.45) 
 

Table 3 summarizes how the controlled experiments can directly populate a supervised 

training set while keeping the labels mechanically defensible. In a semi-supervised setting, 

unlabeled operational windows can be pseudo-labeled and then screened using the same 

anchors (e.g., checking whether predicted load increases correspond to a plausible 

downward shift in fₙ, and whether high-risk states align with elevated T). In this way, the 

results do not only report mechanical behavior, but also demonstrate that the dataset 

structure is suitable for building and scaling AI models with interpretable validation criteria 

an essential requirement for deployment in engineering systems where reliability and safety 

matter. 

 

DISCUSSION 

The results demonstrate that the washing-machine drum–suspension system exhibits 

consistent, measurable dynamic shifts across load and damper conditions, and these shifts 

are directly relevant to AI-based load classification and imbalance-risk detection. As shown 

in Table 2 and Figures 2–4, increasing load reduces the natural frequency (fₙ: 2.95 → 2.77 

→ 2.63 Hz) and increases resonance amplification risk under wet loading (peak T rising to 

2.00). Meanwhile, increasing damping through a high-damper configuration substantially 

reduces peak transmissibility (2.00 → 1.45) without changing fₙ, indicating that mitigation 

can be achieved by damping enhancement rather than stiffness redesign. These patterns 

provide the mechanical basis for using vibration signals as a reliable input for AI models, 

because the operating “states” (load and damping conditions) are not abstract labels they 

are expressed in the system’s dynamics in an interpretable way (Ramadhan & Muchlis, 

2025; Sánchez-Tabuenca et al., 2020). 

The “why” behind these trends is consistent with classical vibration theory and the 

SDOF interpretation used in drum systems. When effective mass increases, the natural 

frequency decreases, which shifts resonance behavior and changes the vibration response 

observable at the drum housing and chassis. At the same time, damping governs resonance 
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peak height: increasing c lowers the peak transmissibility and reduces the amount of 

vibration transmitted to the frame. This explains why the wet OEM condition is the most 

critical in the dataset: wet loading increases effective mass and tends to intensify resonance 

amplification (Jeong et al., 2023), and without additional damping, the peak response 

becomes larger. Conversely, high damping produces a mechanically safer state by 

suppressing resonance even under the same wet load, which is reflected in the marked 

reduction of T and the increase in c (Kim et al., 2019). 

When compared with prior work, the contribution of these results becomes clearer. 

Studies focusing on experimental characterization and modeling have emphasized 

repeatable procedures (free-decay, FRF, operational spin-up) and parameter identification 

to describe the drum dynamics and resonance risk (Ramadhan & Muchlis, 2025; Jeong et 

al., 2023; Sánchez-Tabuenca et al., 2020). Our results are consistent with that stream, but 

extend it by translating the identified parameters into an AI-ready state structure: (i) load 

classes anchored by monotonic fₙ shifts and (ii) imbalance-risk proxies anchored by peak 

transmissibility trends. In the control and optimization stream, learning-based and robust 

approaches have been proposed to reduce vibration/noise and balance spin time versus 

vibration under uncertainty (Shimizu et al., 2022; In et al., 2024). The novelty here is not 

to replace those controllers, but to provide a deployable state-recognition layer that can 

feed any control policy (rule-based, RL, or robust optimization) with explicit, interpretable 

state awareness. This bridging role is particularly valuable because real-world laundry 

states are uncertain and variable, and state inference is often the missing link between 

vibration physics and adaptive control. 

Beyond technical interpretation, the broader implication is that appliance-scale 

vibration problems can benefit from a hybrid engineering–AI logic: physical modeling 

provides guardrails and interpretability, while supervised and semi-supervised learning 

provide scalability when operational data are abundant but labels are limited. Semi-

supervised learning is especially relevant in this context because it reduces dependence on 

costly labeling campaigns while still allowing validation through physical anchors such as 

fₙ trends and resonance indicators (van Engelen & Hoos, 2020; Yang et al., 2023). 

However, this approach also has potential dysfunctions: misclassification of high-risk 

states could lead to unsafe spin profiles. For that reason, the decision layer should adopt 

conservative policies (confidence thresholds, fallback modes, and safety-limited ramp 
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rates), consistent with the idea that operational control should prioritize safety when 

resonance crossing is unavoidable. 

From an action-oriented engineering standpoint, the findings support a practical 

implementation roadmap. First, integrate the classifier outputs (load class and imbalance-

risk proxy) into an adaptive spin-up strategy: for predicted high-risk states (e.g., wet OEM-

like behavior), adjust ramp rate to reduce time spent near critical speed, apply conservative 

speed limits, or trigger redistribution steps when available. Second, embed data-quality 

checks before classification (window validation, outlier filtering), using cross-method 

consistency (free-decay vs FRF-informed bounds) as a screening mechanism to reduce 

pseudo-label errors during semi-supervised expansion. Third, use performance evaluation 

not only through accuracy/F1, but also through engineering metrics peak vibration 

reduction and avoidance of resonance dwell so that the AI system is judged by operational 

value rather than classification alone (Shimizu et al., 2022; In et al., 2024). 

Overall, the discussion indicates that the study’s contribution is both mechanistic and 

methodological: it validates load/damper-driven dynamic shifts in a repeatable way and 

shows how these shifts can be operationalized into an AI-ready framework that supports 

scalable learning and safer adaptive operation. The next logical step is to implement the 

supervised and semi-supervised pipelines on windowed vibration data and evaluate cross-

condition generalization, particularly under real operational variability where unlabeled 

data dominate (van Engelen & Hoos, 2020; Yang et al., 2023). 

 

CONCLUSION 

This study characterized the dynamic behavior of a drum-type washing machine under 

controlled load and damper conditions and translated the findings into an AI-ready 

framework for load classification and imbalance-risk detection. The main lesson from the 

results is that load variability produces consistent mechanical signatures most clearly a 

monotonic decrease in natural frequency as the load increases (empty → dry → wet) while 

damping enhancement substantially reduces resonance amplification, as evidenced by the 

marked reduction in peak transmissibility when using a high-damper configuration under 

the same wet load. These results indicate that vibration-based state recognition is 

mechanically meaningful and can be used to support safer operational decisions during 

spin-up. 
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Scientifically, the study contributes a physically grounded dataset structure and 

labeling logic that can underpin supervised and semi-supervised learning in engineering 

applications. The contribution is not only the identified parameters (e.g., fₙ, ζ, c, and T), 

but also the demonstration that these parameters can serve as interpretable anchors for 

defining load classes and imbalance severity proxies. This strengthens the bridge between 

classical vibration characterization (free-decay/FRF/spin-up) and modern AI adoption by 

providing transparent state definitions that can feed adaptive control strategies. 

This research is limited by the scope of tested conditions and the simplified 

interpretation of the drum–suspension as a dominant-mode system, which may not capture 

multi-mode effects, nonlinearities, or broader machine-to-machine variability. In addition, 

the imbalance severity proxy relies on resonance-related transmissibility trends rather than 

direct measurement of unbalance mass distribution, which may introduce uncertainty when 

generalizing to uncontrolled real-world laundry mixtures. Future work should validate 

cross-machine generalization, expand operational scenarios, and implement the supervised 

and semi-supervised pipelines on windowed vibration signals with uncertainty-aware 

decision thresholds for safe deployment. 
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