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INTRODUCTION 

 The marriage of edge computing and artificial intelligence (AI) resulted in a fresh class of systems 
able to directly execute complex inference on devices with little computing power. In this milieu, TinyML 
has emerged as a path-breaking paradigm making possible the deployment of light machine-learning models 
on microcontrollers and hardware with low power requirements (Duddu et al., 2020). The emerging need for 
real-time decision-making, low latency, energy efficiency, and more importantly, data privacy has been one 
of the very drivers behind this shift. 

Recent advances in small language models (SLMs) such as TinyBERT and DistilGPT hold promise for 
powerful on-device NLP (Anand, 2024; Xu et al., 2022), albeit further optimization for embedded systems 
is necessary. TinyML methods, such as model quantization (Tan et al., 2019), neural architecture search 
(Howard et al., 2017), and pruning (Sandler et al., 2019), are key enablers of this efficacy. 

With the increase in concerns regarding maintaining the user's privacy in the edge AI paradigm, Any 
transmission of pertinent user data for processing to centralized cloud servers would pose a risk to the data's 
confidentiality. Deploying models that can infer locally and using methods such as local differential privacy 
and encrypted computation is vital for gaining users' trust and remaining compliant with in-progress AI 
regulations (Wang et al., 2023). 

However, these practical challenges include working within the constraints imposed by memory, 
minimizing the inference time to acceptable levels, preserving linguistic correctness, and providing 
mechanisms for protection of privacy. Another impediment to mainstream adoption is the lack of well-
defined deployment pipelines and evaluation metrics (Reddi et al., 2020; Roveri, 2023). 

This paper discusses these complications by thoroughly exploring the efficient TinyML architectures 
specifically designed for SLMs in terms of performance-compression-privacy trade-off. We experiment with 
various model architectures and optimization techniques, including MobileNetV2 (Sandler et al., 2019), 
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EfficientNet (Tan et al., 2019), Mamba (Ahamed et al., 2023), knowledge distillation (Huckelberry et al., 
2024), and parameter quantization (Zhang et al., 2018). Our contributions include: 

1. A comparative evaluation of various lightweight architectures for performing language inference on 
the device. 

2. A deployment pipeline utilizing industry-grade tools such as TensorFlow Lite and CMSIS-NN.  
3. A privacy-preserving inference framework incorporating secure enclaves and differential privacy. 
4. Benchmarking on the wide array of edge devices: Raspberry Pi and Cortex-M microcontrollers. 

Related Work 
Tiny Machine Learning (TinyML) is rapidly evolving to support complex AI models under resource 

constraints using a diverse array of hardware components. This early work was primarily focused on vision-
modeling tasks (Howard et al., 2017; Chollet, 2017), but recent work has been exploring NLP applications 
through promising optimization of small language models (SLMs). Techniques such as model pruning, 
quantization, and distillation are increasingly being introduced for the purposes of reducing overall model 
complexity without making too many performance sacrifices (Tan et al., 2019; Alajlan & Ibrahim, 2022). 

Mobile Net and derivations from it, such as MobileNetV2 and V4, are currently the foundational 
lightweight neural architectures. These models introduced depth wise separable convolutions, which allowed 
computation overhead to be greatly reduced without compromising accuracy (Sandler et al., 2019; Howard 
et al., 2017). Likewise, channel shuffling and the compound scaling approaches in Shuffle Net and Efficient 
Net drive their efficiencies in parameters (Zhang et al., 2018; Tan et al., 2019). 

While it is a recent architecture, Mamba replaces droves of traditional attention mechanisms with 
selective space states to bring benefits to sequence modeling in the most constrained environments (Ahamed 
et al., 2023). Such innovations allow making smaller NLP models suited for the edge deployment. 

On the optimization aspect, knowledge distillation and quantization-aware training have already shown 
their capability of retaining the compressed models effectively (Zhu et al., 2023; Reddi et al., 2020). Squeeze 
Net and SE-Net can increase representational power through the channel recalibration mechanisms while 
keeping their compactness (Hu et al., 2018).  

Federated learning and local differential privacy are widely acceptable privacy-preserving techniques 
for edge deployment (Wang et al., 2023; Xu et al., 2022). For example, architectures such as Shadow Net 
(Sun et al., 2020) and Private LoRA (Wang et al., 2023) ensure inference from models without sensitive data 
being sent to the cloud. 

 
Table 1: Summary of Key Related Work 

Approach Model Name Key Feature Domain Edge 
Compatibility 

Privacy 
Integration 

MobileNetV2 Sandler et al. Depthwise 
Convolutions 

Vision/NLP High No 

EfficientNet Tan et al. Compound Scaling Vision Moderate No 
ShuffleNet Zhang et al. Channel Shuffling Vision High No 
Mamba Ahamed et al. State-Space 

Modeling 
NLP High No 

TinyLLM 
Framework 

Kandala et al. Training SLMs for 
edge devices 

NLP High Partial 

ShadowNet Sun et al. Secure Inference Vision Moderate Yes 
PrivateLoRA Wang et al. Privacy-preserving 

fine-tuning 
NLP High Yes 

 
METHODOLOGY 

This work implements a modular framework integrating TinyML architectures, language model 
optimizations, and privacy-preserving into a unified edge AI deployment stack. 
 
Selection of Model Architecture  

Each model chosen in this research serves a different purpose in the edge AI world. MobileNetV2 has 
an inverted residual structure and linear bottlenecks well known to have drastically less memory and 
computation requirements (Sandler et al., 2019). Specifically, it works well for the real-time task of speech 
and language classification where time performance matters.  

https://issn.brin.go.id/terbit/detail/20220302022306403
https://issn.brin.go.id/terbit/detail/20220302222317407


 
 
 
 
IJST Vol 3 No. 3 | November 2024| ISSN: 2828-7223 (print), ISSN: 2828-7045 (online), Page 67-75 

69        IJST VOLUME 3, NO. 3, NOVEMBER 2024 
 

EfficientNet, which was developed through neural architecture search (NAS), employs a compound 
scaling technique that balances on the network depth, width, and resolution within the same process (Tan et 
al., 2019). This yields a highly optimized model that performs well even under aggressive quantization.  

SqueezeNet introduces fire modules and 1x1 convolutions, focused on parameter efficiency and 
maintaining a competitive level of expressiveness for basic NLP operations such as keyword spotting and 
intent detection (Hu et al., 2018).  

Mamba represents a completely different conception from transformer-based architectures in its 
approach to linear state-space sequence modeling (Ahamed et al., 2023). This makes it particularly suited for 
token-level tasks, such as next-word prediction and sentiment analysis, in which long-term dependencies 
need to be captured efficiently. 
 
Optimization Techniques  

Pruning is applying during training, it is a method to iteratively remove low-weight connections, 
reducing total parameters. We did it as structured pruning for convolutional layers, while unstructured for 
fully connected ones using the Model Optimization Toolkit of TensorFlow. With our experiments, it achieved 
up to 45% model reduction with an insignificant accuracy drop (<2%) where pruning applied at around 30% 
of training epochs. 
 
Quantization  

We applied both post-training quantization and quantization-aware training (QAT). QAT was used for 
Mamba to ensure little degradation and simpler models like SqueezeNet used post-training quantization. Post-
training quantization converted float32 weights to int8 and activations appropriately scaled. QAT simulated 
this model behavior at training time, teaching the model to learn robust features under reduced precision. 
 
Knowledge Distillation  

It was a method mostly used for knowledge distillation; this approach makes use of a pre-trained large 
model (teacher) transfer the soft-label information to a smaller model (student). We used DistilGPT as a 
teacher and distilled MobileNetV2 and Mamba models with soft targets and hard labels in a ratio of 0.7:0.3, 
allowing smaller models to generalize better with fewer parameters (Soro, 2021). 

Table 2: Compression Techniques and Impact on Performance 
Technique Accuracy Drop (%) Size Reduction (%) Inference Time Gain (%) 
Pruning 1.5 45 35 
Quantization 2.2 75 55 
Distillation 1.0 60 40 

 
Deployment Framework  
The Deployments: 

Raspberry Pi 4B (ARM Cortex-A72, 4GB RAM): It's a mid-range edge device that could support 
multithreaded inference.  
STM32F746G-DISCO (1MB Flash, 320KB RAM):  
Used to test models in ultra-constrained environments with CMSIS-NN integration. 
 We used TensorFlow Lite Micro (TFLM) and Apache TVM for compilation and runtime management. 
TFLM is better equipped in the STM32 to handle 8-bit quantized inference. With auto-tuning feature, further 
optimization is provided by device-specific scheduling strategies in TVM.  
Moreover, CMSIS-NN offered optimized low-level cores for ARM Cortex-M processors. When integrated 
with these kernels, inference speed can greatly increase computation time is reduced up to 50% when 
comparing quantized with vanilla TFLM. 
 
Implementation of Privacy Layer (Expansion)  
Local Differential Privacy (LDP)  
 We implemented LDP with Laplace and Gaussian noise distributions. Input would be masked before 
random-inference for sensitive tokens, such as user names, medical terms, or locations. Parameters ε (epsilon) 
and δ (delta) were tuned to each model: the lower ε, the higher privacy but a slight hit in performance.  
 
The following parameters were used to evaluate the LDP: 
Output Discrepancy: Difference between pre- and post-noise outputs. 
Inference Degradation: The difference in accuracy in the task (for example, intent detection) as measured 
above. 
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Latency Overhead: Additional time required for LDP filtering.  
Secure Enclaves and Model Encryption  
For those devices having a secure zone (like ARM TrustZone), we encrypted model weights and parameters 
using AES-256. Decryption occurs in runtime in a secure enclave. Simulated secure partitions were created 
for STM32 devices by locking memory addresses using MPU (Memory Protection Units). 

 
Figure 1: On-Device Inference Pipeline 

 
RESULTS AND ANALYSIS 
 For testing the performance of TinyML-optimized small language models (SLMs) on edge devices, we 
deployed the four architectures-MobileNetV2, EfficientNet-B0, Mamba, and SqueezeNet-on two hardware 
platforms, the Raspberry Pi-4 and STM32F746 microcontroller. The evaluation criteria applied for the 
models included inference latency, model size, accuracy, and memory footprint. The privacy test dealt with 
some LDP effectiveness and the time overhead involved due to the application of privacy filters. 
 
Quantitative Evaluation 
 This experiment showed that MobileNetV2 is the one that shows the most promise, being fast and 
relatively accurate and thus perfect for edge inference. Mamba will weigh a little heavier but will perform 
better than the rest in any linguistic task thanks to its efficient sequential modeling (Ahamed et al., 2023). 
While SqueezeNet and EfficientNet are some of the smaller models, they need a lot of tuning, as they could 
drop quite a bit in accuracy after quantization. 

Table 3 Performance Comparison Across Architectures 
Model Size 

(MB) 
Accuracy 
(%) 

Inference 
Time (ms) 

RAM Usage 
(KB) 

LDP Overhead (%) 

MobileNetV2 2.8 87.2 21 780 9.5 
EfficientNet 3.2 85.6 28 850 10.8 
Mamba 4.1 89.5 31 960 12.4 
SqueezeNet 2.1 82.3 19 720 7.8 

 
 The results show that there is always a trade-off between model complexity and inference speed. 
Mamba, which is heavier, will definitely shine in tasks that undergo privacy filters, as it does  
assistants or chatbots (Xu et al., 2022; Wang et al., 2023). 
 
Trade-off Visualization 
 Below is the Python script for creating a bar chart which juxtaposes model sizes, accuracies, and 
inference times. 

 
Figure 2: Trade-off between Model Size, Accuracy, and Inference Time 

 
PIA 
 We introduced local differential privacy (LDP) for the overhead privacy assessment together with 
Laplacian noise. All models brought forth performance costs in terms of inference delay; however, the 
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accuracy drop remained below an acceptable range of less than 2.5%, with under 15% delay in inference 
across the models (Sun et al., 2020). This solidifies the feasibility of private inference on low-power edge 
systems. 
 
Deployment feasibility 
 All models under test compiled successfully and executed on the STM32 platform with CMSIS-NN and 
TensorFlow Lite Micro. There were minor differences in build times for different models depending on their 
degree of complexity. Nevertheless, all run-time efficiencies fell within acceptable latency limits for 
interactive applications. 
 
Cross-Hardware Benchmarking 
 The four models were also subjected to testing across different edge environments, as shown. From 
raspberry pi 4B to STM32F746, the inference time for the STM32 was considerably higher because of the 
absence of parallel processing and reduced memory bandwidth. For MobileNetV2, the inference time 
increased from 21 ms (Raspberry Pi) to 78 ms (STM32F7), emphasizing the importance of aggressive 
compression and optimization for deeply embedded systems. 
Mamba tolerated lower memory due to its state-space representation but had heavier cache thrashing on 
STM32 and less consistency in latencies. 

Table 4: Cross-Hardware Inference Time (ms) 
Model Raspberry Pi 4B STM32F746 Δ Inference Time (%) 
MobileNetV2 21 78 +271% 
EfficientNet 28 97 +246% 
Mamba 31 102 +229% 
SqueezeNet 19 64 +237% 

 
 These results illustrate the impact of platform capabilities and the importance of pairing the right model 
with the right hardware profile. 
 
Multi-Task Generalization 
 Past simple classification, we also evaluated generalization of the models over three other NLP tasks, 
including text classification, keyword spotting, and sentiment detection. Both Mamba and MobileNetV2 
performed respectably well across tasks, while EfficientNet had to make heavy use of task-specific tuning. 
While SqueezeNet performed excellently for keyword spotting thanks to efficiently designed convolutional 
filters, it suffered for sentiment classification due to having lesser ability to capture semantic subtleties. 
 

Table 5: Task-wise Model Performance (Accuracy %) 
Model Text Classification Keyword Spotting Sentiment Detection 
MobileNetV2 87.2 90.3 85.6 
EfficientNet 85.6 88.1 82.4 
Mamba 89.5 91.2 88.9 
SqueezeNet 82.3 91.6 76.4 

 
Discussion 
 These results show various trade-offs in deploying small language models using TinyML frameworks 
at the edge. The most noteworthy finding is that no one architecture is best across dimensions of evaluation; 
rather, the perfect architecture will often come down to application requirements—latency tolerances, 
memory constraints, and privacy levels, for example. 
 
Trade-offs in Performance and Efficiency 
 SqueezeNet serves the fastest inference with the least amount of memory overhead for latency-sensitive 
applications. It is thus well suited for deployment in real-time environments such as smart assistants or voice-
activated IoT systems (Howard et al., 2017; Sun et al., 2020) but incurs the cost of accuracy, particularly for 
complex language modeling tasks. 
 In contrast, Mamba provides the best linguistic performance, thanks to its state-space selective 
mechanism designed for sequence modeling purposes (Ahamed et al., 2023). The RAM usage is very high, 
with longer inference times suitable for any offline NLP application or battery-operated devices with 
moderate compute power like smartphones or advanced wearables (Xu et al., 2022). 

https://issn.brin.go.id/terbit/detail/20220302022306403
https://issn.brin.go.id/terbit/detail/20220302222317407


 
 
 
 
IJST Vol 3 No. 3 | November 2024| ISSN: 2828-7223 (print), ISSN: 2828-7045 (online), Page 67-75 

72        IJST VOLUME 3, NO. 3, NOVEMBER 2024 
 

 MobileNetV2 and EfficientNet lie symmetrically in the middle of the spectrum, offering quite a good 
performance. The relatively low overhead in combination with adequate accuracy qualifies MobileNetV2 for 
outstanding deployment throughout consumer electronics, including healthcare monitors and language-
enabled appliances (Sandler et al., 2019) 
 
Privacy-Preserving Mechanisms at the Edge 
 Thus, integration of LDP mechanisms is practically feasible without excessive drawbacks in the user's 
experience regarding the whole range of LDP models. Although Mamba had slightly higher LDP overhead 
given the longer sequences, all models proved operable. This privacy layer thus particularly benefits personal 
health data collection, applications directed at children, and financial voice bots—where trust in the data 
matters the most (Wang et al., 2023; Sun et al., 2020). 
 Even new regulations coming up across the world (for example, the AI Act in the EU) will not be against 
privacy in this case, not to mention that they can also make these kinds of architectures available for real-
world implementation as compliant, safe solutions (Prabhu et al., 2021) 
 
Limitations and Open Challenges 
 With much promise, however, some limitations need to be mentioned:  
1. On-device data drift may reduce the effectiveness of models over time, in absence of retraining methods.  
2. Energy profiling per se was not addressed in this study, although it is very vital to TinyML. 
3. Generalization between the various languages and dialects still poses a challenge to compact SLMs (Zhu 

et al. 2023).  
 
 In future work, exploring federated fine-tuning and adaptive model distillation may mitigate some of 
these problems while ensuring the preservation of privacy (Wang et al., 2024). 

Table 6: Application-Model Fit Matrix 
Application Area Optimal 

Model 
Key Constraint Privacy 

Priority 
Inference Type 

Smart Assistants SqueezeNet Latency Moderate Real-time 
Wearables (Health 
Data) 

MobileNetV2 Memory High Periodic 

Offline Translation Mamba Accuracy Low Batch 
Smart Home Control MobileNetV2 RAM & CPU Moderate Real-time 
Children's Toys EfficientNet Accuracy + 

Safety 
High Real-time 

Financial Voice Bots Mamba Sequence 
Accuracy 

High Delayed/Asynchronous 

 
Recommendation for practical deployment  
 It is best that the authors of the software pair their models with matching toolchains such as TFLite 
Micro or CMSIS-NN to make inference much easier. 
 
Model Selection Strategies 
 The selection of the most fitting TinyML architecture will depend on an evaluation of application-
specific tradeoffs pertaining to model complexity, inference latency, memory usage, and fair accuracy 
thresholds. For example: 

1. While Mamba with LDP assures performance and privacy in medical voice interface, Mamba with 
LDP assures both performance and privacy in medical voice interface, keeping in mind its auxiliary 
input needs. 

2. Wearable technologies with battery capability may rely on the low-RAM footprint and fast 
execution of MobileNetV2. 

3. Children's educational devices can make effective use of EfficientNet in combination with AES-
encrypted deployment, where privacy protection and real-time interaction are important (Reddi et 
al., 2020; Wang et al., 2024). 

 So, the framework set forth in this work provides a means for designers to engage in principled and 
contextually aware decision-making about the SLMs for deployment across edge devices. 
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TinyML in Regulatory Contexts 
 As regulatory frameworks such as the EU AI Act, GDPR, and U.S. AI Bill of Rights continue to evolve, 
privacy-preserving TinyML will gradually evolve from a niche subject to a pressing regulatory need (Prabhu 
et al., 2021). Implementations in public places or for vulnerable populations (e.g., children, elderly) must 
ensure really high levels of privacy guarantees, most of which can only be satisfied through on-device 
computation. 
 By ensuring that language inference does not require cloud connectivity and avoids sensitive data 
transfer, architectures discussed in this paper help align TinyML deployments with emerging legal 
frameworks. Furthermore, the modular design of the proposed pipeline makes it easy for developers to update 
privacy features according to compliance requirements that evolve from time to time. 
 
Industry Adoption and Ecosystem Maturity 
 The maturity of frameworks such as TensorFlow Lite Micro, TVM, and CMSIS-NN in the coming years 
will surely accelerate their incorporation in real-world applications. Chipmakers ARM and NVIDIA have put 
significant investment in compiling optimizations tailored to quantized inference, thereby easing developer 
burden. 
Several industries have already started to adopt TinyML + NLP: 
Healthcare: Non-intrusive patient monitoring in-hospital assistants. 
Retail: Inventory checkers and voice-activated POS terminals. 
Agriculture: Soil-monitoring systems with NLP capabilities and weather-query bots. 
These use cases clearly demonstrate that edge intelligence has transitioned from the realm of hypothesis into 
a tangible approach that has scalability. 
In the case of product designers, one might prioritize consideration of MobileNetV2 in situations where final 
hardware specs are not guaranteed, as its tool will be the most generalizable. 
Security engineers should use encrypted model parameters with LDP for an end-to-end secure inference. 
 
CONCLUSION AND FUTURE WORK 
 The present study has examined in-depth TinyML architectures aimed at deploying small language 
models (SLMs) onto edge devices while maintaining privacy during inference. Our investigation has 
evaluated the performance, memory use, and privacy characteristics of famous lightweight neural 
architectures: MobileNetV2, EfficientNet, Mamba, and SqueezeNet. 
 
Major contributions include: 

1. Mamba has the highest accuracy of inference for languages and thus is suitable for use in 
applications that call for contextual awareness. 

2. MobileNetV2 has the best balance between size, latency, and accuracy for environments under 
heavy constraint, such as smart homes and wearables. 

3. SqueezeNet is better for ultra-low latency cases but incurs a certain degree of loss in accuracy from 
the model's perspective. 

4. Integration of LDP and secure enclaves provides a minimal performance overhead, corroborating 
their usability for edge AI systems. 

5. Our approach of quantization, pruning, and knowledge distillation can compress models without 
enormous functional sacrifice. Also, from our deployment experiments, it has been demonstrated 
that real-time privacy-preserving NLP applications can indeed be afforded on the edge using today's 
microcontrollers and single-board computers.  

Future Work 
 In the subsequent time, several interesting avenues deserve further examination: 
Federated TinyML: Sharing model updates across edge devices to safeguard privacy among each retraining. 
 
Energy profiling and optimization: Of utmost importance for battery-powered applications in wearables 
and remote sensors. 
Support for multiple languages: Fine-tuning of SLMs to underrepresented languages and dialects using 
constrained hardware. 
 
Neuromorphic and event-driven inference: Involving spiking neural networks and novel architectures for 
ultra-efficient NLP on-device. 
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The combination of TinyML and privacy-preserving language models will be a necessity as AI regulations 
get stricter and edge deployments burgeon. This work sets the stage for the next generation of intelligent, 
safe, and responsive edge devices. 
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