
       
 IJST Vol 4 No. 2 | July 2025 | ISSN: 2828-7223 (print), ISSN: 2828-7045 (online), Page 168-176 

168 
 

L. Setyowati, H. N. Granito 

Smart Presentation Control Using Hand Gesture Recognition 
 

Lilis Setyowati1*, Hans Naufal Granito2  
1,2Informatics, Industrial Technology, Universitas Gunadarma, Indonesia 

 

 
 
INTRODUCTION 

Artificial Intelligence (AI) is a technology that simulates human thinking and applies 

it to machines, enabling them to process information and make decisions similar to how 

humans do (Saini, 2023; Khan, 2021). One of the emerging applications of AI is hand 

gesture recognition, which is part of the field of computer vision (IBM, n.d.; Afni, Silmina, 

& Pangestu, 2021). 

Hand gesture recognition can be utilized in presentation activities to help presenters 

effectively deliver ideas, viewpoints, or information to the audience. This can ultimately 

lead to conclusions or new perspectives on a given topic (Budiman, Lestanti, Evvandri, & 

Putri, 2022). 

To enhance the quality of presentations, they need to be made more interactive and 

engaging — not only in terms of content and delivery but also from a technical perspective, 

by minimizing potential disruptions. Common issues include the need for the presenter to 

pause briefly to change slides, mismatched timing between the presenter and the moderator 

when switching slides, and other technical disturbances. 

Abstract: Presentation is an activity conducted to express opinions 
in public, aimed at decision-making or providing new insights on a 
particular matter. During presentations, audience engagement often 
suffers due to several disruptions faced by the speaker, such as having 
to pause to change slides, mismatched transition timing by the 
moderator when changing slides, and other issues. In order to avoid 
these distractions, Smart Presentation Feature is designed to provide 
an effective presentation experience. This feature runs on Windows 
operating system and is developed using MediaPipe, OpenCV, 
PyAutoGUI, win32gui module, PyInstaller, and a virtual 
environment using Miniconda. This feature works by reading the 
user’s hand gesture to determine the control actions for the 
presentation. According to a user satisfaction questionnaire 
consisting of 11 questions, each with 5 criteria ranging from 
“Strongly Disagree” to “Strongly Agree”, The final score was 
89.26% in total, which translates to “Strongly Agree”. This signifies 
that users are satisfied with the Smart Presentation Feature. 
 
Keywords: Artificial Intelligence, Hand Gesture Recognition, 
Mediapipe, OpenCV, Presentation     
 
 

Article History 
Received : July 08th, 2025 
Revised : July 19th, 2025 
Accepted : July 21st, 2025 
Published : July 31st, 2025 
 
Corresponding author*: 
lisetyo@staff.gunadarma.ac.id  
 
Cite This Article: 
Setyowati, L., & Hans Naufal 
Granito. (2025). Smart 
Presentation Control Using Hand 
Gesture 
Recognition. International 
Journal Science and 
Technology, 4(2), 168–176. 
 
DOI: 
https://doi.org/10.56127/ijst.v4i
2.2244  

https://issn.brin.go.id/terbit/detail/20220302022306403
https://issn.brin.go.id/terbit/detail/20220302222317407
mailto:lisetyo@staff.gunadarma.ac.id
https://doi.org/10.56127/ijst.v4i2.2244
https://doi.org/10.56127/ijst.v4i2.2244


 
 
 
 
IJST Vol 4 No. 2 | July 2025 | ISSN: 2828-7223 (print), ISSN: 2828-7045 (online), Page 168-176 

169   IJST VOLUME 4, NO. 2, JULY 2025 
 

One potential solution to address these problems is the development of a Smart 

Presentation Feature that utilizes hand gesture recognition technology (Sruthi & Swetha, 

2023). This feature can be built using the Python programming language (Donaldson, n.d.), 

supported by libraries such as OpenCV and MediaPipe (MediaPipe, n.d.; Mahesh, Reddy, 

Reddy, & Reddy, 2022), PyAutoGUI, PyInstaller, and the win32gui module (Wuxc, n.d.). 

With this feature, the presenter can switch slides simply by performing specific hand 

gestures, eliminating the need to physically interact with a keyboard or mouse. The system 

detects the gesture and translates it into presentation control commands. 

 

RESEARCH METHOD 

The research method for developing the Smart Presentation Feature is divided into 

several stages: planning, analysis, design, implementation, and testing. The planning stage 

involves collecting relevant information to support the development of the feature, sourced 

from various types of literature such as books, journals, and websites (Humaira, 2023). 

The analysis stage consists of two parts: hardware requirements analysis and software 

requirements analysis. The design stage involves the creation of a flowchart, which serves 

as a reference for determining the program’s workflow. The implementation stage is the 

process of translating the design into actual code to build the intended feature. 

The Smart Presentation Feature utilizes several libraries such as OpenCV and 

MediaPipe for hand gesture detection (Budiman et al., 2022; Sruthi & Swetha, 2023). 

These libraries enable accurate landmark recognition to interpret hand movements and 

gestures (MediaPipe, n.d.). 

 

Hardware Requirements Analysis 

The Smart Presentation Feature was developed using hardware with the following 

specifications: the system model used is an Asus TUF Gaming F15 FX506LH, equipped 

with an Intel(R) Core (TM) i7-10860H processor. The system also includes a 512 GB 

hard drive, 16 GB of RAM, and operates on the Windows 11 operating system. 

 

Software Requirements Analysis 

The development of the Smart Presentation Feature utilizes several software tools, 

including Visual Studio Code, Miniconda, Python version 3.10.14, PIP, and several 

Python libraries: 

https://issn.brin.go.id/terbit/detail/20220302022306403
https://issn.brin.go.id/terbit/detail/20220302222317407


 
 
 
 
IJST Vol 4 No. 2 | July 2025 | ISSN: 2828-7223 (print), ISSN: 2828-7045 (online), Page 168-176 

170   IJST VOLUME 4, NO. 2, JULY 2025 
 

• opencv-python version 4.9.0 (Mahesh et al., 2022), 

• numpy version 1.26.4, 

• PyAutoGUI version 0.9.54, 

• mediapipe version 0.10.11 (MediaPipe, n.d.), 

• pyinstaller version 6.6.0 (Cortesi, n.d.), 

• and the win32gui module (Wuxc, n.d.). 

Flowchart Design 

A flowchart is a visual representation of a process or algorithm, illustrating the steps 

required to complete a specific task. It serves as a universal tool that can be easily 

understood by various stakeholders, including programmers, managers, and end-users. The 

flowchart of the Smart Presentation Feature program is shown in Figure 1. 

 
Figure 1. Program Flowchart 

 

RESULT AND DISCUSSION 

The result of the Smart Presentation Feature program is an executable file that can be 

directly run on Windows 10 and 11 operating systems without the need to open the source 

https://issn.brin.go.id/terbit/detail/20220302022306403
https://issn.brin.go.id/terbit/detail/20220302222317407


 
 
 
 
IJST Vol 4 No. 2 | July 2025 | ISSN: 2828-7223 (print), ISSN: 2828-7045 (online), Page 168-176 

171   IJST VOLUME 4, NO. 2, JULY 2025 
 

code or run it through a terminal. The executable file for the Smart Presentation Feature is 

available for download via the following link: 

https://github.com/hng011/smart-

presentation/releases/download/v1.0.1/smart_presentation_feature.zip 

 

Open Finger Identification Logic 

 The hand gesture recognition process conducted by the program consists of several 

stages, beginning with the detection of 21 hand landmarks, as illustrated in the figure 2. 

 
Figure 2. Hand Landmarks 

 

These 21 landmarks are obtained using MediaPipe Hands, a solution provided by 

MediaPipe. MediaPipe Hands consists of several models working in tandem, beginning 

with a Single-Shot Detector (SSD) that detects the location of the hand. Once the hand is 

detected, the Hand Landmark Model identifies the 21 specific hand landmarks using a 

regression technique. 

After detecting the hand landmarks, the next step is to determine which fingers are 

open. Figure 3 shows a pseudocode used to identify the open fingers. An array [4, 8, 12, 

16, 20], corresponding to the fingertips (as shown in Figure 2), is used, along with an empty 

array to store the status of each finger (open or closed). The identification is performed by 

comparing the fingertip coordinates with their corresponding lower joint coordinates [1, 6, 

10, 14, 18]. If the fingertip position is higher than its reference joint, a value of 1 is stored 

in the array, indicating the finger is open; otherwise, a value of 0 is stored, indicating it is 

closed. 

 
Figure 3. Pseudocode for Open Finger Identification 

https://issn.brin.go.id/terbit/detail/20220302022306403
https://issn.brin.go.id/terbit/detail/20220302222317407
https://github.com/hng011/smart-presentation/releases/download/v1.0.1/smart_presentation_feature.zip
https://github.com/hng011/smart-presentation/releases/download/v1.0.1/smart_presentation_feature.zip


 
 
 
 
IJST Vol 4 No. 2 | July 2025 | ISSN: 2828-7223 (print), ISSN: 2828-7045 (online), Page 168-176 

172   IJST VOLUME 4, NO. 2, JULY 2025 
 

The value 2 in [...,][2] refers to the horizontal coordinate, while using 1 would refer to 

the vertical position. After processing, the opened_finger array will contain five values 

representing the thumb to the little finger, respectively. This array only contains binary 

values: 1 for open and 0 for closed. 

 

Presentation Slide Navigation Logic 

The logic for navigating presentation slides—such as in Microsoft PowerPoint, Google 

Slides, Canva, and similar platforms—relies first on identifying which fingers are open, as 

previously explained. Once a final array containing five binary values (1s and 0s) is 

produced, two additional arrays are used to define gesture-based slide navigation 

commands. 

• The first array [0, 0, 1, 1, 1] represents the gesture to move forward to the next slide. 

• The second array [1, 1, 1, 0, 0] represents the gesture to move backward to the 

previous slide. 

 

These gestures are illustrated in Figure 4 and Figure 5, respectively. When the detected 

finger pattern matches the first array, the program sends a command to move to the next 

slide. When it matches the second array, it sends a command to move to the previous slide. 

This functionality is made possible by the win32gui module. 

The win32gui module provides an interface to the native Win32 GUI API [14]. It offers 

a wide range of functions that allow users to interact directly with the Windows GUI system 

through Python code. For example, it can simulate pressing the right arrow key when the 

first array is detected or the left arrow key when the second array is identified. 

 
Figure 4. Hand Gesture for the Array Value [0, 0, 1, 1, 1] 

https://issn.brin.go.id/terbit/detail/20220302022306403
https://issn.brin.go.id/terbit/detail/20220302222317407


 
 
 
 
IJST Vol 4 No. 2 | July 2025 | ISSN: 2828-7223 (print), ISSN: 2828-7045 (online), Page 168-176 

173   IJST VOLUME 4, NO. 2, JULY 2025 
 

 
Figure 5. Hand Gesture for the Array Value [1, 1, 1, 0, 0] 

 

Executable File Creation 

The program was converted into an executable file using PyInstaller, a tool that 

bundles Python scripts and all required dependencies into a single standalone application 

(Cortesi, n.d.). This enables end-users to run the application without the need to install 

Python or any external libraries separately. 

The process of creating the executable file for the Smart Presentation Feature involved 

the following steps: 

1. Ensure that all Python code files are located in the same directory, for example, 

placed inside a folder named src, as illustrated in figure 6. 

 
Figure 6. Directory Structure 

https://issn.brin.go.id/terbit/detail/20220302022306403
https://issn.brin.go.id/terbit/detail/20220302222317407


 
 
 
 
IJST Vol 4 No. 2 | July 2025 | ISSN: 2828-7223 (print), ISSN: 2828-7045 (online), Page 168-176 

174   IJST VOLUME 4, NO. 2, JULY 2025 
 

2. Then, enter the following command in the terminal: 

3. After pressing Enter, and once the command has been executed, two new folders 

named "build" and "dist" will appear in the main directory, along with a new file 

in .spec format. 

o The build folder contains temporary files generated during the conversion 

process. 

o The dist folder contains the final result of the conversion, including the 

executable file and several other supporting files or folders. 

o The .spec file stores the configuration used by the PyInstaller library during 

the packaging process. 

4. The .exe file located in the dist folder is the file that can be executed directly by the 

user. 

 

Distance-Based Testing 

In this study, distance-based testing was conducted to evaluate how far the feature can 

detect hand gestures for navigating presentation slides. Table 1 presents the results of 

testing the feature at four different distance intervals: 

 

Table 1.System Responsiveness Based on Distance 

No Distance Result 
1 0–1 Meter Responsive 
2 1–2 Meters Responsive 
3 2–3 Meters Less Responsive 
4 > 3 Meters Not Responsive 

 

As shown in Table 1, the system was fully responsive within a range of 0 to 2 meters. 

However, responsiveness dropped at distances greater than 2 meters, and no response was 

observed beyond 3 meters. 

 

Testing with Both Hands Visible 

Another test was conducted to assess the system’s performance when both hands are 

visible to the camera. It was observed that the system sometimes failed to accurately 

identify the active hand performing the gesture. Figure 7 illustrates a scenario where this 

issue occurred. 

https://issn.brin.go.id/terbit/detail/20220302022306403
https://issn.brin.go.id/terbit/detail/20220302222317407


 
 
 
 
IJST Vol 4 No. 2 | July 2025 | ISSN: 2828-7223 (print), ISSN: 2828-7045 (online), Page 168-176 

175   IJST VOLUME 4, NO. 2, JULY 2025 
 

 
Figure 7. Example of Incorrect Hand Detection During Gesture Recognition 

 

In the instance shown in Figure 7, the right hand was intended to perform the gesture 

to trigger a slide change. However, the system mistakenly detected the left hand, which 

was not performing any gesture. Consequently, the system did not execute any command. 

To minimize detection errors, users are advised to ensure that only one hand remains 

visible to the camera during presentation control. 

 

CONCLUSION 

The hand gesture feature was developed to enable slide transitions in presentation 

applications such as Microsoft PowerPoint, Google Slides, Canva, and other platforms that 

support navigation using the right and left arrow keys on a keyboard. The feature was 

successfully implemented using the Python programming language and several supporting 

libraries and modules, including MediaPipe, OpenCV, PyAutoGUI, win32gui, PyInstaller, 

and a virtual environment via Miniconda. This feature is deployable through an executable 

file, compatible with Windows 10 and 11 operating systems. 

Based on the experimental results, several conclusions can be drawn. First, the feature 

responds effectively at a distance of 0 to 2 meters. Between 2 and 3 meters, system 

responsiveness is reduced. Beyond 3 meters, the feature no longer responds. Furthermore, 

a user satisfaction questionnaire utilizing a Likert scale yielded a score of 89.26%, which 

falls under the “Strongly Agree” category. This indicates a high level of user satisfaction 

with the Smart Presentation Feature. 

The feature functions optimally when the distance between the user's hand and the 

webcam is no greater than 2 meters. It is also recommended that only one hand be visible 

to the webcam to avoid detection errors caused by multiple hands being interpreted 

simultaneously. 

https://issn.brin.go.id/terbit/detail/20220302022306403
https://issn.brin.go.id/terbit/detail/20220302222317407


 
 
 
 
IJST Vol 4 No. 2 | July 2025 | ISSN: 2828-7223 (print), ISSN: 2828-7045 (online), Page 168-176 

176   IJST VOLUME 4, NO. 2, JULY 2025 
 

Future enhancements to the Smart Presentation Feature could include: 

• Displaying an icon indicating the currently active application, 

• Offering alternative methods for slide navigation besides hand gestures to improve 

accessibility, and 

• Expanding compatibility to multiple platforms to reach a broader user base. 

REFERENCES 

Afni, S. V., Silmina, E. P., & Pangestu, I. B. (2021). Computer vision digunakan untuk 
memantau pemuda di masa pandemi Covid-19. Procedia of Engineering and Life 
Science, 1(2). 

Budiman, S. N., Lestanti, S., Evvandri, S. M., & Putri, R. K. (2022). Pengenalan gestur 
gerakan jari untuk mengontrol volume di komputer menggunakan library OpenCV 
dan MediaPipe. Jurnal Ilmiah Teknik Informatika, 16(2), 223–232. 

Cortesi, D. (n.d.). PyInstaller manual. PyInstaller. https://pyinstaller.org/en/stable/ 
(Accessed: June 16, 2024) 

Donaldson, T. (n.d.). Python as a first programming language for everyone. 
https://www.cs.ubc.ca/wccce/Program03/papers/Toby.html (Accessed: April 24, 
2024) 

Humaira, D. Z. (2023). Aplikasi Kost Mamih berbasis Android [Unpublished 
undergraduate thesis]. 

International Business Machine (IBM). (n.d.). What’s computer vision? 
https://www.ibm.com/topics/computer-vision (Accessed: April 25, 2024) 

Khan, H. (2021). Types of AI: Different types of artificial intelligence systems. FossGuru. 
https://fossguru.com/types-of-ai-different-types-of-artificial-intelligence-systems 
(Accessed: April 9, 2024) 

Mahesh, M., Reddy, V., Reddy, A., & Reddy, C. (2022). Object detection and 
dimensioning using OpenCV. International Journal of Creative Research Thoughts, 
10(6), 60–68. 

MediaPipe. (n.d.). MediaPipe hands. https://github.com/google-ai-
edge/mediapipe/blob/master/docs/solutions/hands.md (Accessed: April 25, 2024) 

Liljenberg, P. (n.d.). The Python X Library. https://github.com/python-xlib/python-xlib 
(Accessed: April 26, 2024) 

Saini, N. (2023). Research paper on artificial intelligence & its applications. International 
Journal for Research Trends and Innovation, 4(8), 356–360. 

Sruthi, S., & Swetha, S. (2023). Hand gesture controlled presentation using OpenCV and 
MediaPipe. International Journal of Engineering Technology and Management 
Sciences, 4(7), 338–342. 

Wuxc. (n.d.). win32gui. 
https://github.com/wuxc/pywin32doc/blob/master/md/win32gui.md (Accessed: April 
26, 2024) 

Zahid, P., & Fatima, N. (2016). Performance comparison of most common high level 
programming languages. International Journal of Computing Academic Research, 
5(5), 246–258. 

https://issn.brin.go.id/terbit/detail/20220302022306403
https://issn.brin.go.id/terbit/detail/20220302222317407
https://pyinstaller.org/en/stable/
https://www.cs.ubc.ca/wccce/Program03/papers/Toby.html
https://www.ibm.com/topics/computer-vision
https://fossguru.com/types-of-ai-different-types-of-artificial-intelligence-systems
https://github.com/google-ai-edge/mediapipe/blob/master/docs/solutions/hands.md
https://github.com/google-ai-edge/mediapipe/blob/master/docs/solutions/hands.md
https://github.com/python-xlib/python-xlib
https://github.com/wuxc/pywin32doc/blob/master/md/win32gui.md

