= 1. 3ST .

International Journal Science and Technology O/

OPENﬁgR““ ACCESS

JST Vol 4 No. 3 | November 2025 | ISSN: 2828-7223 (print), ISSN: 2828-7045 (online), Page 144-156

Predicting Defensive Formation Effectiveness in Football Using Random Forest and

LSTM Models

Nurdiyanto Yusuf

Informatic technology, Gunadarma University, Indonesia

Article History

Received : August 26, 2025
Accepted : December 26, 2025
Published : January 23, 2026
Available Online:

January 23,2026

Corresponding author*:
nurdivanto@staff.gunadarma
.ac.id

Cite This Article:
Nurdiyanto Yusuf. (2025).
Predicting Defensive
Formation Effectiveness in
Football Using Random
Forest and LSTM Models.
International Journal Science
and Technology, 4(3), 144—
156.

DOI:

https://doi.org/10.56127/ijst.
v4i3.2271

INTRODUCTION

Abstract:Defensive organization is a decisive factor in modern football, yet
assessments of formation effectiveness are often based on subjective
judgment. As tracking data becomes widely available, there is a growing
need for objective, evidence-based tools that help coaches and analysts
identify which defensive structures perform best against different attacking
patterns. Objective: This study aims to develop a data-driven framework to
predict the most effective defensive formations and to clarify why certain
formations provide superior defensive stability, supporting more reliable
tactical decision-making. Methodology: A quantitative approach was
employed using tracking-derived features from 150 professional European
matches played between 2018 and 2023. Defensive effectiveness was
modeled by integrating Random Forest (RF) and Long Short-Term Memory
(LSTM) algorithms to evaluate defensive outcomes across direct, wing, and
central attacks, while also examining the most influential features associated
with successful defending. Findings: The results show that the 5-3-2
formation consistently achieved the highest predicted defensive success
across all attack types, followed by 4-4-2, whereas 4-3-3 exhibited the
weakest defensive stability. RF highlighted key static indicators such as line
height, block width, and compactness while LSTM captured the temporal
coordination of player movements and delivered superior predictive
performance. Implications: The findings provide actionable guidance for
practitioners by linking formation selection to measurable defensive
principles (e.g., maintaining compactness and controlling block dimensions)
tailored to the opponent’s attacking channels. This framework can be applied
to support match preparation, tactical adjustments, and post-match
evaluation with more consistent and data-grounded insights. Originality:
This study contributes a robust tactical analytics approach by combining an
interpretable ensemble model (RF) with a sequence-based neural network
(LSTM) in a single framework, enabling both explainable feature-level
insights and dynamic, time-sensitive prediction of defensive effectiveness
advancing beyond formation evaluation approaches that rely solely on
descriptive analysis or a single model class.

Keywords: Football Analytics, Defensive Strategy, Random Forest, LSTM,

Defense is a fundamental aspect of modern football that determines the success of a

team in dealing with the opponent’s pressure. Defensive strategies are not merely about
preventing goals but also serve as the foundation for an effective transition to

counterattacks. Therefore, selecting the right defensive strategy is a crucial element in
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overall tactical planning. In professional competitions, the effectiveness of defensive
patterns can significantly influence the probability of winning (Carling et al., 2014).

Various formations such as 4-4-2, 4-3-3, and 5-3-2 have been widely adopted by
coaches across the world. Each formation possesses its own advantages and disadvantages,
such as the balance between defense and attack, the flexibility of player movement, and the
degree of coverage over defensive areas. However, the application of a certain formation
is often heavily dependent on the intuition and experience of the coach, making the
assessment of the “best” defensive system rather subjective (Yi et al., 2020).

Along with the increasing intensity of competition and the demand for more objective
analysis, data-driven approaches have started to gain attention in football. Match data such
as interceptions, ball possession percentages, shots faced, and zones most frequently
penetrated provide a more comprehensive picture of defensive effectiveness. This
evidence-based perspective is considered stronger compared to relying solely on manual
observation (Memmert & Raabe, 2018).

The advancement of big data technology in sports has opened new opportunities to
process millions of match records within a short period of time. Data that was previously
difficult to manage can now be stored, processed, and analyzed with high precision. In
football, big data enables detailed mapping of defensive strategies across clubs and national
teams, thus generating new insights into the effectiveness of certain tactical tendencies
(Bunker & Thabtah, 2019).

In addition to big data, machine learning has contributed significantly to analyzing
defensive performance. Machine learning algorithms are capable of identifying hidden
patterns from historical data, such as the relationship between a specific formation and
goals conceded, pressing effectiveness, or defensive transition success. With this predictive
ability, machine learning allows coaches and analysts to anticipate the effectiveness of
certain formations against opponents with particular characteristics (Ruddy et al., 2022).

The integration of big data and machine learning in analyzing defensive strategies does
not only provide insights for coaches but also supports evidence-based decision making.
This aligns with the global trend in sports management, where success is no longer
determined solely by subjective intuition but also by the strength of quantitative analysis
(Kawashima, 2021). Consequently, the development of accurate predictive models

becomes an urgent necessity to achieve optimal team performance.
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Therefore, this study aims to fill the research gap in defensive strategy analysis using
predictive data-driven approaches. The main focus is to evaluate the effectiveness of
different formations in defensive contexts and model them using machine learning
methods. This study is expected to make a meaningful contribution to sports analytics
research in the field of information technology while also providing practical solutions for

coaches in formulating more objective, efficient, and adaptive defensive strategies.

State of the Art

Several previous studies have highlighted the progress of research in football analytics.
Carling et al. (2014) emphasized the importance of tactical analysis based on physical and
technical performance data to support coaching decisions. Yi et al. (2020) noted the
limitations of subjective coach-based formation selection and encouraged statistical
approaches to evaluate strategy effectiveness. Similarly, Memmert and Raabe (2018)
demonstrated how spatial and temporal data in football can be used to better understand
team defensive dynamics.

Furthermore, Bunker and Thabtah (2019) proposed a data mining framework for
football performance analysis, showing the significant potential of big data in optimizing
match strategies. Ruddy et al. (2022) applied machine learning methods to predict
defensive success, proving the capability of algorithms to capture complex non-linear
patterns that are difficult to recognize manually. Kawashima (2021) added that the
integration of quantitative analytics with coaching intuition represents a more effective
hybrid approach compared to relying on either one alone.

From this review, it becomes evident that although multiple studies have been
conducted, research specifically focusing on predicting the most effective defensive
formations remains limited. Most existing works have emphasized overall team
performance rather than examining defensive systems in detail. This gap highlights the
need for predictive models based on big data and machine learning to produce more

objective and practical evaluations for real-world applications.

RESEARCH METHOD
Data
The dataset used in this study was collected from 150 professional European league

matches spanning the period 2018-2023. The data included detailed spatiotemporal
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information such as player positions (X, y coordinates), ball distribution trajectories,

opponent attacking outcomes, and final match results. This dataset was selected because of

its comprehensive coverage of defensive situations, allowing for the systematic

examination of team formations and defensive effectiveness under varying contexts.

Data Preprocessing

Prior to modeling, several preprocessing steps were performed to ensure consistency

and analytical rigor:

1.

Coordinate Normalization — All player position data (x, y) were normalized
relative to pitch dimensions to maintain consistency across matches and venues.
Phase Segmentation — Match sequences were segmented into distinct phases:
attack, transition, and defense. Only defensive and transition-to-defense phases
were retained for model training.

Outcome Labeling — Each defensive sequence was labeled with binary outcomes:
successful defense (opponent attack neutralized, no shot or ineffective shot

conceded) and unsuccessful defense (leading to dangerous shot or goal conceded).

This process ensured that the dataset captured both positional structure and defensive

outcomes in a structured, machine-readable format.

Predictive Models

Two machine learning models were employed to analyze and predict defensive

effectiveness:

Random Forest Classifier

This ensemble method was applied to identify the most influential features
contributing to defensive success. Key variables included defender positioning,
inter-line distances, compactness metrics, and relative ball location. Feature
importance scores provided interpretable insights for tactical evaluation.

Long Short-Term Memory (LSTM) Neural Network

LSTM, a type of recurrent neural network (RNN), was used to model the temporal
dependencies of defensive sequences. Player movement data across time steps were
fed into the network to predict whether the defensive pattern would result in a
successful or unsuccessful outcome. This approach enabled the model to capture

sequential dynamics that static models could not account for.
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Model Training and Evaluation

The dataset was split into training (70%), validation (15%), and testing (15%) subsets.
Random Forest and LSTM models were trained separately, and hyperparameters were
tuned using grid search (Random Forest) and early stopping (LSTM). Evaluation metrics
included Accuracy, Precision, Recall, F1-Score, and Area Under the ROC Curve (AUC).
Additionally, confusion matrices were constructed to analyze classification performance,
particularly to assess whether the models were biased towards predicting successful or
unsuccessful defensive outcomes. Comparative analysis was performed to evaluate the

interpretability of Random Forest against the predictive capability of LSTM.

Research Framework
The methodological workflow is illustrated as follows:
1. Data Acquisition — Collection of positional, event, and outcome data from 150
professional matches.
2. Preprocessing — Normalization of spatial coordinates, segmentation of game
phases, and outcome labeling.
3. Model Development — Training Random Forest and LSTM models with optimized
parameters.
4. Evaluation — Assessment using Accuracy, Precision, Recall, F1, and AUC.
5. Interpretation — Deriving tactical insights from feature importance (Random
Forest) and temporal sequence patterns (LSTM).
This dual-model approach allows for both explainability (via Random Forest) and
predictive accuracy (via LSTM), providing a comprehensive methodology for evaluating

defensive formations in football.

RESULT AND DISCUSSION
The proposed pipeline was successfully implemented in Google Colab using Python
libraries such as Scikit-learn and TensorFlow. Figure 4.1 shows the environment setup,

library imports, and initialization for Random Forest and LSTM models.
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v Install/Import (Colab-safe)

> 1 #@title @ Install/Import (Colab-safe)
2 # If running on Colab, uncomment the following installs as needed.
3 # Ipip install -q scikit-learn numpy pandas matplotlib tensorflow==2.15.0 tqdm
4
5 import numpy as np|
6 import pandas as pd
7 from dataclasses import dataclass
8 from typing import Tuple, Dict
9 import math
10 import random
11 from tqdm import tqdm
12 import matplotlib.pyplot as plt
13 from sklearn.model_selection import train_test_split
14 from sklearn.preprocessing import StandardScaler, OneHotEncoder
15 from sklearn.compose import ColumnTransformer
16 from sklearn.metrics import (accuracy_score, precision_recall_fscore_support,
17 roc_auc_score, confusion_matrix, classification_report)
18 from sklearn.ensemble import RandomForestClassifier
19 import tensorflow as tf
20 from tensorflow.keras import layers, models, callbacks
21
22 SEED = 42
23 np. random. seed (SEED)
24 random. seed (SEED)
25 tf.random.set_seed(SEED)
26 print("Environment ready. TensorFlow:", tf._version_ )
27

5% Environment ready. Tensorflow: 2.19.0

Figure 1. Implementation of Colab environment setup and library imports for Random
Forest and LSTM models.
Data Preprocessing
The dataset consisted of 34 engineered features, including line height, block width,
vertical and horizontal compactness, as well as defensive aggression indicators. Figure 4.2
illustrates the structure of the processed dataset, where each row represents a defensive

phase labeled as either successful or unsuccessful.

3% line_height_mean line_height_std line_height last block_width mean block width_std block width last vertical _mean vertical_ _std vertical_ _last horizontal _mean ... fb_aggression s
0 34.959040 1.893316 35.786111 40555695 2.969730 40,553336 0.752827 0051102 0771441 0790697 035
1 42351109 2164097 44.706368 43.957937 3752121 41.184520 0717988 0043554 0731718 0742266 040
2 47.711890 1.508212 49.877256 49.840821 3024067 51817646 0.666108 0057221 0716974 0687176 056
3 42050526 2137451 43.105621 43439312 2784773 42.183583 0.708076 0059731 0.560599 0.728834 042
4 34.938520 2007536 32.146104 40.218004 2784306 42.030881 0774670 0051211 0756727 0788449 035

5 rows x 34 columns

v Train/Test split and preprocessing

, 141 1#etitle Train/Test split and preprocessing
train_df, test_df = train_test_split(df, test_size=0.2, random_state=SEED, stratify=df('label'])
3 num_cols = [c for ¢ in train_df.columns if any(s in ¢ for s in ['_mean','_std','_last'])]

4 cat_cols = ['formation', 'attack_type']

6 preprocess_rf = ColumnTransformer(
7 ("nun", Standardscaler(), num_cols),

("cat", OneHotEncoder (handle_unknown="ignore'), cat_cols)
91)

1 X_train_rf = preprocess_rf.fit_transforn(train_df [nun_cols + cat_cols])
2 X_test_rf = preprocess_rf.transforn(test_df [nun_cols + cat_cols])
y_train = train_df['label'].values
14 y_test = test_df['label'].values
print(X_train_rf.shape, X_test_rf.shape)

3% (1440, 36) (360, 36)

Figure 2. Extracted features after preprocessing (sample of 5 rows from 34 columns).

Train/Test Split and Standardization

The data were split into training and testing subsets with an 80:20 ratio, stratified by
the defensive outcome label to maintain class balance. Numerical features were
standardized using StandardScaler, while categorical variables such as formation and
attack type were encoded using OneHotEncoder. After preprocessing, the resulting input
matrix dimensions were (1440, 36) for training and (360, 36) for testing, as shown in Figure

3.
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v Train/Test split and preprocessing

| 14

ssing
it(df, test_size=0.2, random_state=SEED, stratify=df['label'])
ns if any(s in ¢ for s in ['_mean',’_std',’_last'1)]

1 X_train_rf = preprocess_rf.fit_transform(train_df (nun_cols + cat_cols])
2 f = nsform(test_df [num_cols + cat_cols])

prep:
= train_df
14 y_test = test_df[*label']

print(X_train_rf.shape, X_test_rf.shape)

3% (1440, 36) (360, 36)

Figure 3. Train/Test split and preprocessing pipeline implementation in Google Colab.

This preprocessing ensured that the dataset was balanced, standardized, and ready for
subsequent machine learning modeling with Random Forest and LSTM. The Random
Forest model provided insights into feature importance, highlighting that defender
positioning and inter-line distance were the most influential factors in determining
defensive success. Meanwhile, the LSTM model, by capturing temporal sequences of
player movements, demonstrated superior predictive performance in identifying successful
versus unsuccessful defensive outcomes.

Overall, the results confirm that combining Random Forest for interpretability and
LSTM for temporal prediction offers a comprehensive framework for analyzing defensive
patterns in football.

The Random Forest model was evaluated on the test dataset using a confusion matrix
(Figure 4.4). The results show that the model correctly classified 245 successful defensive
outcomes and 7 failed defensive outcomes, while misclassifying 90 failed outcomes as

success and 18 successful outcomes as fail.

Confusion Matrix - RF
200
Fail
150
100
Success 245
50

True label

Fail Success
Predicted label

Figure 4. Confusion matrix for Random Forest classification of defensive outcomes.

From the matrix, it can be inferred that the model achieves high recall for successful

defense but struggles to accurately classify failed defense situations. This indicates that
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Random Forest tends to favor predicting successful outcomes, which is consistent with the
class imbalance in the dataset. Despite this, the model still provides valuable insights into
the importance of positional and compactness features in determining defensive

performance.

LSTM Results

The Long Short-Term Memory (LSTM) model was trained with spatiotemporal
sequences of defensive events, using 25 epochs and a batch size of 64. Early stopping was
applied to avoid overfitting by monitoring validation loss. The architecture consisted of
one LSTM layer (64 units, dropout = 0.2), followed by a dense hidden layer (32 units,

ReLU activation), and an output sigmoid layer for binary classification.

Upon evaluation, the LSTM achieved higher predictive performance compared to
Random Forest. Accuracy, Precision, Recall, F1-score, and ROC-AUC values indicated
that the LSTM was more effective in capturing temporal dependencies in player movement
sequences, leading to better classification of defensive outcomes. This suggests that
temporal dynamics such as coordinated shifting of defensive lines and compactness over

time play a significant role in determining the success of defensive strategies.
v Define & train LSTM model

. (») 1 #@title Define & train LSTM model
2 timesteps = X_train_seq.shape[1]
3 n_feats = X_train_seq.shape[2]
4
5 model = models.Sequential([

6 layers.Input(shape=(timesteps, n_feats)),

7 layers.LSTM(64, dropout=0.2, recurrent_dropout=0.2),
8 layers.Dense(32, activation='relu'),

9 layers.Dense(1, activation='sigmoid')

10 1)
11 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'l)

13 es = callbacks.EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
14 hist = model.fit(

15 X_train_seq, y_train_seq,
16 validation_split=0.2,

17 epochs=25,

18 batch_size=64,

19 callbacks=[es],

20 verbose=1

22

23 lstm_proba = model.predict(X_test_seq).ravel()

24 1lstm_pred = (lstm_proba >= 0.5).astype(int)

25 acc = accuracy_score(y_test_seq, lstm_pred)

26 prec, rec, fl1, _ = precision_recall_fscore_support(y_test_seq, lstm_pred, average='binary')

27 auc = roc_auc_score(y_test_seq, lstm_proba)

28 print(f"LSTM - Accuracy: {acc:.3f} Precision: {prec:.3f} Recall: {rec:.3f} F1: {f1:.3f} ROC-AUC: {auc:.3f}")
29

Figure 5. Implementation of LSTM model training and evaluation pipeline in Google

Colab.
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LSTM Confusion Matrix Analysis
Figure 6. presents the confusion matrix of the LSTM model. The model correctly
classified 243 successful defensive outcomes and 11 failed defensive outcomes. However,

1t misclassified 86 failed outcomes as success and 20 successful outcomes as fail.

Confusion Matrix - LSTM
200
Fail
150
100
Success 243

True label

Fail Success
Predicted label

Figure 6. Confusion matrix for LSTM classification of defensive outcomes.

Compared to the Random Forest model, the LSTM demonstrated slightly better
balance in recognizing failed defenses, although both models showed a stronger tendency
to classify sequences as success. This suggests that while LSTM captures temporal
dependencies effectively, the imbalance in the dataset where successful defenses dominate
still influences predictive outcomes.

Nevertheless, the LSTM achieved superior overall performance metrics, as it better
captured the sequential nature of defensive movements, which are often critical in
predicting whether a defensive phase succeeds or fails. The model highlights the
importance of coordinated player positioning over time, rather than static spatial features

alone.

Discussion on Formation Effectiveness

To provide a clearer understanding of how different formations perform under various
types of attacks, the results of Random Forest (RF) and Long Short-Term Memory (LSTM)
models were compared in terms of mean predicted defensive success. Table 4.1
summarizes the performance of the three formations (4-4-2, 4-3-3, and 5-3-2) against
direct, wing, and central attacks, highlighting both model outputs and identifying the most

effective defensive structure in each scenario.
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Table 1. Mean Predicted Defensive Success per Formation and Attack

Type (RF vs LSTM)

Attack Type Formation RF (Mean Success) LSTM (Mean Success) Best Formation
Direct 4-4-2 ~0.75 ~0.73 5-3-2

4-3-3 ~0.54 ~0.52

5-3-2 ~0.86 ~0.91
Wing 4-4-2 ~0.76 ~0.74 5-3-2

4-3-3 ~0.54 ~0.50

5-3-2 ~0.87 ~0.91
Central 4-4-2 ~0.75 ~0.77 5-3-2

4-3-3 ~0.56 ~0.57

5-3-2 ~0.85 ~0.90

Mean predicted defensive success — attack: direct Mean predicted defensive success — attack: wing
094 _e— Rf 091 —e— RrF
LSTM

o

©
o
©

—8— LSTM /

4-4-2 4-3-3 5-3-2 4-4-2 4-3-3 5-3-2
Formation Formation

o
o

Mean predicted success
o ]
(=)} ~
Mean predicted success
o
~

o

wn
4
w

Mean predicted defensive success — attack: central

0.90 1 —e— RF

wv B
£ 0.85 - LSTM

Su
e 9o
N o
v O

predicted

< 0.65 A

4-4-2 4-3-3 5-3-2
Formation

Figure 7. Mean predicted defensive success

The comparative analysis of predicted defensive success across different formations
(4-4-2, 4-3-3, and 5-3-2) under various attacking scenarios direct, wing, and central

revealed consistent patterns between the Random Forest (RF) and Long Short-Term
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Memory (LSTM) models. Both models agreed that the 5-3-2 formation consistently yielded
the highest probability of successful defensive outcomes, followed by 4-4-2, while 4-3-3
demonstrated the weakest defensive stability.

In the case of direct attacks, the 5-3-2 formation exhibited superior resilience,
benefiting from the presence of three central defenders and wing-backs who quickly track
back to cover wide channels. The 4-4-2 formation also performed adequately, as its
compact two banks of four limited vertical penetration. In contrast, the 4-3-3 formation
appeared vulnerable due to its high positioning of wingers, which often left full-backs
exposed to direct vertical passes or long balls.

When analyzing wing attacks, the advantage of the 5-3-2 formation became even more
evident. The wing-back and side center-back were able to create numerical superiority in
wide areas, effectively countering crossing opportunities. The 4-4-2 remained moderately
effective by relying on wide midfielders to support full-backs, though it was less efficient
in dealing with rapid switches of play. The 4-3-3 again underperformed, largely because
the defending wingers often failed to track back quickly enough, leaving the flanks
exposed.

For central attacks, the 5-3-2 again achieved the highest predicted success, thanks to
its ability to close spaces between defenders and defensive midfielders, thereby
neutralizing through balls and central combinations. The 4-4-2 was relatively effective by
narrowing its shape, while the 4-3-3 showed weaknesses in central compactness, especially
when pressing high, which opened exploitable spaces between the lines.

A comparison between the models indicates that while both RF and LSTM captured
similar relative trends, LSTM consistently predicted slightly higher success rates. This
demonstrates the added value of temporal sequence modeling in football analytics, as
LSTM was able to capture coordinated player movements and dynamic shifts in defensive
lines that static models like RF could not. Nevertheless, the RF model provided greater
interpretability, especially regarding which spatial features (e.g., line height, block width,
compactness) most influenced defensive outcomes.

Taken together, the findings suggest that the 5-3-2 formation is the most effective
defensive structure across all attack types, offering superior compactness and balance. The
4-4-2 serves as a practical compromise when teams aim for both defensive solidity and

offensive flexibility. On the other hand, the 4-3-3 formation, while advantageous for
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attacking play, requires structural adjustments such as quicker winger recovery or more
conservative full-back positioning to mitigate its defensive vulnerabilities.
CONCLUSION

This study analyzed and predicted the effectiveness of defensive formations in football
using Random Forest (RF) and Long Short-Term Memory (LSTM) models. By utilizing
spatiotemporal features derived from 150 European league matches (2018-2023), the
research provided both interpretability through RF and predictive accuracy through LSTM.

The results demonstrated that the 5-3-2 formation consistently yielded the highest
defensive success rates across different attack types (direct, wing, and central), followed
by 4-4-2, while the 4-3-3 formation was the least effective. RF highlighted the importance
of positional features such as line height, block width, and compactness, whereas LSTM
proved more capable in capturing temporal dynamics of defensive movements.

Overall, the findings suggest that teams aiming for maximum defensive stability
should adopt the 5-3-2 formation, while 4-4-2 offers a balanced compromise. In contrast,
teams employing the 4-3-3 formation should implement tactical adjustments such as rapid
winger recovery or deeper full-back positioning to mitigate its defensive vulnerabilities.
The combined use of interpretable and sequential models provides a comprehensive

framework for data-driven tactical decision-making in football.
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