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INTRODUCTION

Abstract: Robotic-arm deployment beyond specialized facilities is
often constrained by time-intensive programming and the need for
expert operators, while gesture-based control can lose reliability due
to sensor noise, drift, and inter-user variability. Objective: This study
develops a low-cost, embedded robotic arm control system that learns
from human demonstrations. Methodology: A quantitative
experimental prototyping approach was used by building a 3-DOF
robotic arm with an MPU6050 IMU and an Arduino Mega 2560.
Multi-user gesture trials were collected, and system performance was
analyzed through end-to-end evaluation of recognition accuracy,
response time, learning efficiency, and motion replication error.
Findings: The system achieved 85% gesture recognition accuracy, a
195 ms average response time, and a 4.2° mean absolute joint-angle
error (SD = 2.1°), reaching target performance within <5 adaptation
iterations while operating within microcontroller memory limits.
Implications: The results support the feasibility of real-time, gesture-
driven robotic arm control on resource-constrained embedded
hardware for educational and light industrial use, enabling faster
setup and user personalization without extensive pre-training.
Originality: This work integrates embedded motion pattern
recognition with error-based adaptive learning in a low-cost 3-DOF
platform and reports consolidated end-to-end evidence (accuracy—
latency—learning convergence—replication fidelity) to demonstrate
practical feasibility.

Keywords: Robotic arm control; Adaptive learning algorithm;
Motion pattern recognition; Dynamic Time Warping; k-Nearest
Neighbors; Human-robot interaction; IMU sensor; Gesture

Robotics technology has transformed industrial automation and human-robot
collaboration, yet many robotic arms still rely on pre-programmed trajectories and fixed
parameters that limit adaptability in dynamic environments (Craig et al., 2005).
Conventional robot programming remains widely used across sectors, but it often demands

specialized expertise and substantial setup time, which can hinder broader adoption (Craig
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et al., 2005). Gesture-based control offers a more intuitive interface by mapping natural
human motion to robot commands (Kofman et al., 2005), and advances in motion capture
and learning-from-demonstration have enabled wearable and IMU-based real-time control
(Calinon et al., 2010; Go & Kim, 2015; Kulkarni et al., 2019; Vartholomeos et al., 2016).
IMU-driven implementations still face persistent engineering constraints: sensitivity to
noise, drift, and sensor placement, together with inter-user and execution-speed variability
that can reduce recognition reliability and motion replication fidelity under embedded
resource limitations (Saraf et al., 2023; Syauqy et al., 2024).

Al-enabled robotic-arm control increasingly integrates motion pattern recognition to
improve autonomy, while simultaneously increasing the demand for robust perception and
efficient computation. Recent studies report hierarchical planning pipelines that combine
inverse kinematics with offline reinforcement learning (Wang et al., 2025), vision-based
perception paired with reinforcement-learning control for complex environments (Hong et
al., 2022; Hu et al., 2021), and intent-driven interfaces such as EEG-based reach-and-grasp
control (Wilson & Saravanan, 2025). Motion pattern recognition itself has progressed from
semantic behavior modeling (Tan, 2020) to signal/ensemble approaches (Chen, 2024) and
deep-learning pipelines (e.g., LSTM) for real-time recognition (Ji & Lin, 2023). These
directions highlight an engineering requirement for robotic-arm systems that remain real-
time, robust, and adaptive under motion variability and sensing uncertainty while operating
within practical data and hardware limits (Bakar et al., 2008; Senthilkumar & Munusamy,
2024).

Gesture-based robotic manipulation research demonstrates multiple pathways to
improve HRI through intuitive control. Marker-less hand tracking enables real-time
teleoperation of dual robotic arms without predefined programming, though constraints in
wrist mobility and workspace motivate more robust orientation handling (Matheswaran &
Li, 2025). Wearable controllers built on microcontroller platforms provide accessible
gesture control for manipulators and mobile robots (Solly & Aldabbagh, 2023), and vision-
based systems using deep learning can reduce operator burden and enhance collaboration
in manipulation tasks (Abhishek et al., 2025; Arjanurak et al., 2025). Real-time frameworks
have also been proposed to improve coordination and precision in gesture-driven control
(Muruganandhan et al., 2025), and industrial-oriented designs explore gesture-controlled
pick-and-place with custom grippers and modern robotics frameworks under low-latency
constraints (Singh et al., 2025; Sumukha & Asha, 2024). Recurring gaps in this category
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include limited end-to-end evaluation that jointly reports recognition accuracy, latency, and
motion replication fidelity, as well as insufficient robustness testing across users, gesture
speeds, and real operating conditions on embedded hardware.

IMU-based gesture recognition studies consistently identify signal quality and
mounting conditions as dominant constraints. Drift and measurement noise can accumulate
and degrade recognition stability over time (Saraf et al., 2023; Tan et al., 2022), and MEMS
smartphone sensor reviews similarly emphasize noise- and drift-related limitations that
affect real-world motion tracking (Mohd Ali et al., 2018). Sensor placement further
influences performance because mounting location and body-segment differences alter
motion artifacts and the interpretability of captured patterns (Abdullah et al., 2017;
Baniasad et al., 2023). Filtering and sensor-fusion strategies, together with placement-
aware calibration methods such as vision-assisted placement calibration, are commonly
proposed to mitigate these issues (Wu & Jafari, 2017). Robustness-oriented directions
extend to cross-device sensor fusion (e.g., earbuds and smartphones) (Gong et al., 2021)
and multimodal fusion in data-glove systems (Xue et al., 2025). Limited reporting remains
on how drift/noise mitigation and placement calibration translate into end-to-end robotic
control performance, and standardized robustness protocols across placements, users, and
long-duration operation are still uncommon.

Online, adaptive, and incremental learning approaches target the difficulty of offline-
trained models in handling new users and variations in gesture amplitude, speed, or style
(Zhang et al., 2017; Zhang et al., 2023). Iterative online sequential learning methods were
introduced to update recognition performance during use (Yu et al, 2013), while
continuous-learning frameworks emphasize personalization and dynamic gesture addition
without losing accuracy (Liu et al., 2025). Incremental representation learning, including
online PCA with adaptive subspaces, aims to improve adaptability while reducing
computation and storage requirements that matter for embedded deployment (Yao et al.,
2010a, 2010b). Reinforcement-learning-based classifiers using multimodal EMG-IMU
signals have also been explored to learn from online experience (Vésconez et al., 2022),
and deep models report strong performance for dynamic and dual-handed inertial gestures
(Lai et al., 2023; Renju & Kausik, 2019). Evidence remains limited on how online
adaptation affects end-to-end robotic control outcomes under small training sets, long-

duration drift, and embedded compute/memory constraints.
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The present study addresses three persistent limitations: inconsistent end-to-end
evaluation, limited robustness to inter-user and speed variability, and feasibility constraints
for low-cost embedded implementation. The proposed system is an affordable 3-DOF
robotic arm control platform that learns from human demonstrations by combining DTW-
based time-series alignment to handle temporal variability (Sakoe & Chiba, 1978) with
lightweight k-NN classification suitable for embedded deployment (Cover & Hart, 1967),
complemented by an error-based adaptive learning mechanism that iteratively reduces
tracking errors to improve motion replication. The system is evaluated end-to-end in terms
of recognition accuracy, response time, learning efficiency, and motion replication fidelity
to demonstrate practical applicability for low-cost gesture-based robot control. The
achieved results 85% gesture recognition accuracy, 195 ms end-to-end response time, 4.2°
mean absolute joint-angle error, convergence within five iterations, and memory usage
within Arduino Mega limits support the feasibility of an embedded DTW+k-NN

architecture with adaptive error correction for real-time gesture-driven robotic arm control.

METHODOLOGY
System Architecture

The intelligent robotic arm control system consists of three main components: input
sensing, data processing, and actuation. Figure 1 illustrates the overall system architecture
showing the information flow from human motion capture to robot actuation. The input
sensing module utilizes an MPU6050 IMU sensor attached to the human operator's arm to
capture motion data. The sensor provides 6-axis measurements including 3-axis
acceleration and 3-axis angular velocity at a sampling rate of 100 Hz. The data processing
module, implemented on an Arduino Mega 2560 microcontroller, performs sensor fusion,
motion pattern recognition, and control signal generation. The actuation module comprises
three MG996R servo motors controlling the shoulder, elbow, and wrist joints of the robotic

arm.
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Figure 1. Overall system architecture showing the flow from human motion capture

through data processing to robot actuation

The system architecture follows a modular design philosophy, with clearly defined
interfaces between components. The MPU6050 sensor communicates with the Arduino
Mega via 12C protocol, enabling reliable high-speed data transfer. Servo motors receive
control signals through pulse-width modulation (PWM), with position commands updated
at 50 Hz to ensure smooth motion. The mechanical structure utilizes laser-cut acrylic and
aluminum components, providing a rigid yet lightweight frame with total system weight

under 1.5 kg.
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Hardware Implementation

The robotic arm hardware consists of a 3-DOF serial manipulator with dimensions of
40%30%20 cm in its nominal configuration. Figure 2 shows the assembled robotic arm
system with labeled components. The base joint provides shoulder rotation, the mid-joint
controls elbow flexion/extension, and the end-effector joint manages wrist orientation.
Each joint employs an MG996R servo motor rated for 11 kg-cm torque at 4.8V, providing
sufficient power for smooth motion control while maintaining compact form factor. Table

1 summarizes the complete hardware specifications.

Figure 2. Assembled 3-DOF robotic arm system showing mechanical structure and servo
motor placement

Table 1. Hardware Component Specifications

Component Specification

Microcontroller Arduino Mega 2560 (ATmega2560, 16 MHz)
Servo Motor 3x MG996R (11 kg-cm @ 4.8V, 180° rotation)
IMU Sensor MPU6050 (3-axis accel +4g, 3-axis gyro £500°/s)
Structure Acrylic + Aluminum (40x30%20 cm)

Dimensions 40 x 30 x 20 cm

Weight <l.5kg

Payload Capacity 200 grams

The MPUG6050 sensor module integrates a 16-bit analog-to-digital converter (ADC)
for each sensing axis, providing high-resolution motion measurements. The sensor features

a programmable full-scale range of +2g to +16g for the accelerometer and £250°/s to
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+2000°/s for the gyroscope. For this application, the accelerometer range is set to +4g and
the gyroscope range to +500°/s, balancing sensitivity and dynamic range for typical human

arm movements.

Software Algorithm

The adaptive learning algorithm operates in two phases: training and execution. Figure
3 presents the flowchart of the adaptive learning algorithm. During the training phase, the
system collects motion samples from the operator, preprocessing the data using Gaussian
filtering with 6=2 to remove high-frequency noise while preserving motion characteristics.
Feature extraction computes statistical measures including mean, standard deviation,
maximum, and minimum values across sliding windows of 50 samples (0.5 seconds).

The DTW algorithm computes the similarity between motion sequences by finding
the optimal warping path that minimizes cumulative distance. The implementation uses
Euclidean distance as the local cost metric and applies Sakoe-Chiba band constraint with
width of 10% of sequence length to reduce computational complexity. The resulting DTW
distance serves as the metric for k-NN classification with k=3, chosen to balance between
noise robustness and computational efficiency. Table 2 presents the algorithm parameters
used in this study.

Table 2. Algorithm Parameters and Configuration

Parameter Value

Pattern Recognition Algorithm DTW + k-NN
Learning Method Error-based Adaptive
Preprocessing Filter Gaussian (0=2)
Sampling Rate 100 Hz

k-NN neighbors (k) 3

Learning Rate (o) 0.15 (decay: 0.9)
Memory Usage <32 KB RAM
Adaptation Iterations 5 iterations

Classification proceeds by computing DTW distances between the current motion
sequence and all stored training examples. The k nearest neighbors determine the gesture
class through majority voting. When multiple gesture classes receive equal votes, the
system selects the class with the minimum average distance to break ties. The confidence
level is computed as the ratio of votes for the winning class to the total number of

neighbors.
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The motion control module translates classified gestures into joint angle commands
through inverse kinematics. The geometric approach solves for joint angles given desired
end-effector position, with singularity avoidance implemented through workspace
boundary checking. Trajectory generation employs cubic spline interpolation to ensure
smooth motion transitions with continuous velocity profiles.

Adaptive learning refines control parameters through error-based feedback. After each
motion execution, the system compares achieved joint angles with target values, computing
error metrics across all DOF. Parameter updates follow gradient descent with learning rate
a=0.15, decreasing by factor of 0.9 after each iteration. The adaptation process terminates
when mean absolute error falls below 5 degrees or after 5 iterations, balancing learning

speed with convergence stability.

RESULTS AND DISCUSSION
System Performance Evaluation

Comprehensive performance testing evaluated the system across multiple metrics:
gesture recognition accuracy, motion replication fidelity, response time, and learning
efficiency. The test protocol involved 10 different arm gestures, each performed 20 times
by 3 operators with varying arm dimensions and movement styles. This yielded 600 total
test samples, providing statistical significance for performance assessment. Table 3
summarizes the key performance metrics achieved.

Table 3. Summary of System Performance Metrics

Performance Metric Achieved Value
Target Accuracy (Simple Gestures) > 85%
Accuracy (Complex Gestures) >70%

Response Time (Maximum) <200 ms
Response Time (Average) < 100 ms
Development Cost <IDR 5,000,000
Payload Capacity 200 grams
Learning Iterations <5 iterations
Continuous Operation 8+ hours

Gesture recognition accuracy reached 85% when evaluated against manually labeled
ground truth. Analysis of misclassification patterns revealed that errors primarily occurred
with similar gestures differing only in movement speed or amplitude. The confusion matrix
indicated highest recognition rates for distinct gestures with unique motion profiles, while

subtle variations posed greater classification challenges.
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Motion replication fidelity was assessed by comparing target joint angles with actual
achieved angles during gesture execution. The mean absolute error across all joints
measured 4.2 degrees with standard deviation of 2.1 degrees. The shoulder joint
demonstrated highest accuracy with mean error of 3.1 degrees, while the wrist joint showed
larger variations with mean error of 5.8 degrees, attributable to its smaller servo motor and
mechanical compliance.

Response time measurements captured the latency from gesture initiation to robot
motion start. The complete processing pipeline, including sensor reading, preprocessing,
classification, and control command generation, completed within 195 milliseconds on
average. This response time falls well below the 200 millisecond target, ensuring that the
system feels responsive during operator interaction. Table 4 breaks down the processing
time for each stage.

Table 4. Processing Time Breakdown by Stage

Processing Stage Time (ms)
Data Acquisition 50
Preprocessing & Feature Extraction 45

DTW Computation 75
Trajectory Generation 25

Total Response Time 195

Adaptive Learning Performance
Learning behavior across iterations.

The adaptive learning algorithm showed consistent improvement across training
iterations and reached target performance within <5 iterations for all gestures. The learning
curve exhibited rapid early gains, including a 45% mean error reduction in the first
iteration, followed by smaller refinements in subsequent iterations. A compact table/figure

reporting MAE per iteration (1-5) would directly evidence this convergence behavior.

Embedded feasibility and resource usage.

Memory usage remained within the Arduino Mega capacity during operation. The
system used 28.5 KB of 32 KB SRAM for training examples, feature vectors, and buffers,
while flash consumption reached 178 KB of 256 KB, supporting feasibility on a

microcontroller platform without external computing hardware.
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Gesture-dependent learning efficiency.

Learning efficiency varied by gesture complexity. Single-joint gestures converged
within three iterations, whereas coordinated multi-joint gestures required up to five
iterations, indicating that multi-DOF coordination increases adaptation difficulty under the

same update schedule.

Comparison with Existing Systems

The proposed system was compared with selected gesture-controlled platforms (Table
6). The reported accuracy (85%) falls within the range of 78-92% in the cited studies, while
the response time (195 ms) is within the reported 150-250 ms band for real-time
recognition systems. The adaptive learning capability is positioned as a differentiator
because it enables personalization with limited demonstrations rather than extensive offline
pre-training.

Table 6. Performance Comparison with Existing Gesture-Based Robot Control

Systems
System Accuracy Response Time Learning
Proposed System 85% 195 ms Adaptive
(YiLi, 2012) 78-82% 250 ms Static
(Eko Susetyo 88-92% 150 ms Static
Yulianto et al.,
2023)
(Roid & Maurits, 80-84% 220 ms Fixed
2023)

Recognition accuracy of 85% compares favorably with studies reporting 78-92%
accuracy using various sensor modalities and classification algorithms. The response time
of 195 milliseconds falls within the range of 150-250 milliseconds typical of real-time
gesture recognition systems.

The adaptive learning capability distinguishes this system from purely reactive gesture
recognition approaches. While many systems require extensive pre-training with large
datasets, the present implementation achieves functional performance with minimal
training examples through online adaptation. This characteristic reduces setup time and

enables personalization to individual operators.
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Limitations and Future Work

Current limitations.

The 3-DOF configuration limits workspace and dexterity compared to 6-DOF
manipulators, while the 200 g payload constrains heavier tasks. Recognition accuracy of
85% leaves room for improvement, particularly for similar gestures. Sensitivity to sensor
placement and operator-specific motion patterns indicates a need for more robust
calibration and user-invariant modeling. Fixed link-length assumptions in inverse

kinematics reduce portability to different arm geometries.

Future directions.
Future work can expand the arm to 6-DOF, improve recognition robustness (including
advanced classifiers if computation allows), develop adaptive inverse kinematics for

varying geometries, and integrate force sensing for safer human—robot interaction.

CONCLUSION

This research successfully developed and validated an intelligent robotic arm control
system featuring adaptive learning based on motion pattern recognition. The integration of
MPU6050 IMU sensing, DTW-based gesture classification, and error-based parameter
adaptation enables intuitive human-robot interaction at low cost. Experimental evaluation
demonstrated 85% gesture recognition accuracy, sub-200 millisecond response times, and
effective learning within 5 iterations.

The system achieves its design objectives of affordability, accessibility, and adequate
performance for educational and light industrial applications. The total cost under 5 million
IDR makes the technology accessible to institutions and organizations with limited
budgets. The adaptive learning capability reduces setup complexity by enabling
personalization without extensive pre-training.

Key technical contributions include the integration of Gaussian filtering for noise
reduction, DTW-based temporal sequence matching, k-NN classification with dynamic
confidence thresholding, and error-based adaptive learning with decaying learning rate.
The combination of these techniques provides robust gesture recognition while maintaining
computational efficiency suitable for microcontroller implementation.

The research demonstrates that effective gesture-based robot control can be achieved
using affordable components and efficient algorithms. This combination of accessibility
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and functionality supports broader adoption of robotic technology in education, small-scale
manufacturing, and assistive applications. The open architecture facilitates further research

and customization for specific application requirements.
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