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INTRODUCTION 

Robotics technology has transformed industrial automation and human–robot 

collaboration, yet many robotic arms still rely on pre-programmed trajectories and fixed 

parameters that limit adaptability in dynamic environments (Craig et al., 2005). 

Conventional robot programming remains widely used across sectors, but it often demands 

specialized expertise and substantial setup time, which can hinder broader adoption (Craig 
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et al., 2005). Gesture-based control offers a more intuitive interface by mapping natural 

human motion to robot commands (Kofman et al., 2005), and advances in motion capture 

and learning-from-demonstration have enabled wearable and IMU-based real-time control 

(Calinon et al., 2010; Go & Kim, 2015; Kulkarni et al., 2019; Vartholomeos et al., 2016). 

IMU-driven implementations still face persistent engineering constraints: sensitivity to 

noise, drift, and sensor placement, together with inter-user and execution-speed variability 

that can reduce recognition reliability and motion replication fidelity under embedded 

resource limitations (Saraf et al., 2023; Syauqy et al., 2024). 

AI-enabled robotic-arm control increasingly integrates motion pattern recognition to 

improve autonomy, while simultaneously increasing the demand for robust perception and 

efficient computation. Recent studies report hierarchical planning pipelines that combine 

inverse kinematics with offline reinforcement learning (Wang et al., 2025), vision-based 

perception paired with reinforcement-learning control for complex environments (Hong et 

al., 2022; Hu et al., 2021), and intent-driven interfaces such as EEG-based reach-and-grasp 

control (Wilson & Saravanan, 2025). Motion pattern recognition itself has progressed from 

semantic behavior modeling (Tan, 2020) to signal/ensemble approaches (Chen, 2024) and 

deep-learning pipelines (e.g., LSTM) for real-time recognition (Ji & Lin, 2023). These 

directions highlight an engineering requirement for robotic-arm systems that remain real-

time, robust, and adaptive under motion variability and sensing uncertainty while operating 

within practical data and hardware limits (Bakar et al., 2008; Senthilkumar & Munusamy, 

2024). 

Gesture-based robotic manipulation research demonstrates multiple pathways to 

improve HRI through intuitive control. Marker-less hand tracking enables real-time 

teleoperation of dual robotic arms without predefined programming, though constraints in 

wrist mobility and workspace motivate more robust orientation handling (Matheswaran & 

Li, 2025). Wearable controllers built on microcontroller platforms provide accessible 

gesture control for manipulators and mobile robots (Solly & Aldabbagh, 2023), and vision-

based systems using deep learning can reduce operator burden and enhance collaboration 

in manipulation tasks (Abhishek et al., 2025; Arjanurak et al., 2025). Real-time frameworks 

have also been proposed to improve coordination and precision in gesture-driven control 

(Muruganandhan et al., 2025), and industrial-oriented designs explore gesture-controlled 

pick-and-place with custom grippers and modern robotics frameworks under low-latency 

constraints (Singh et al., 2025; Sumukha & Asha, 2024). Recurring gaps in this category 
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include limited end-to-end evaluation that jointly reports recognition accuracy, latency, and 

motion replication fidelity, as well as insufficient robustness testing across users, gesture 

speeds, and real operating conditions on embedded hardware. 

IMU-based gesture recognition studies consistently identify signal quality and 

mounting conditions as dominant constraints. Drift and measurement noise can accumulate 

and degrade recognition stability over time (Saraf et al., 2023; Tan et al., 2022), and MEMS 

smartphone sensor reviews similarly emphasize noise- and drift-related limitations that 

affect real-world motion tracking (Mohd Ali et al., 2018). Sensor placement further 

influences performance because mounting location and body-segment differences alter 

motion artifacts and the interpretability of captured patterns (Abdullah et al., 2017; 

Baniasad et al., 2023). Filtering and sensor-fusion strategies, together with placement-

aware calibration methods such as vision-assisted placement calibration, are commonly 

proposed to mitigate these issues (Wu & Jafari, 2017). Robustness-oriented directions 

extend to cross-device sensor fusion (e.g., earbuds and smartphones) (Gong et al., 2021) 

and multimodal fusion in data-glove systems (Xue et al., 2025). Limited reporting remains 

on how drift/noise mitigation and placement calibration translate into end-to-end robotic 

control performance, and standardized robustness protocols across placements, users, and 

long-duration operation are still uncommon. 

Online, adaptive, and incremental learning approaches target the difficulty of offline-

trained models in handling new users and variations in gesture amplitude, speed, or style 

(Zhang et al., 2017; Zhang et al., 2023). Iterative online sequential learning methods were 

introduced to update recognition performance during use (Yu et al., 2013), while 

continuous-learning frameworks emphasize personalization and dynamic gesture addition 

without losing accuracy (Liu et al., 2025). Incremental representation learning, including 

online PCA with adaptive subspaces, aims to improve adaptability while reducing 

computation and storage requirements that matter for embedded deployment (Yao et al., 

2010a, 2010b). Reinforcement-learning-based classifiers using multimodal EMG–IMU 

signals have also been explored to learn from online experience (Vásconez et al., 2022), 

and deep models report strong performance for dynamic and dual-handed inertial gestures 

(Lai et al., 2023; Renju & Kausik, 2019). Evidence remains limited on how online 

adaptation affects end-to-end robotic control outcomes under small training sets, long-

duration drift, and embedded compute/memory constraints. 
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The present study addresses three persistent limitations: inconsistent end-to-end 

evaluation, limited robustness to inter-user and speed variability, and feasibility constraints 

for low-cost embedded implementation. The proposed system is an affordable 3-DOF 

robotic arm control platform that learns from human demonstrations by combining DTW-

based time-series alignment to handle temporal variability (Sakoe & Chiba, 1978) with 

lightweight k-NN classification suitable for embedded deployment (Cover & Hart, 1967), 

complemented by an error-based adaptive learning mechanism that iteratively reduces 

tracking errors to improve motion replication. The system is evaluated end-to-end in terms 

of recognition accuracy, response time, learning efficiency, and motion replication fidelity 

to demonstrate practical applicability for low-cost gesture-based robot control. The 

achieved results 85% gesture recognition accuracy, 195 ms end-to-end response time, 4.2° 

mean absolute joint-angle error, convergence within five iterations, and memory usage 

within Arduino Mega limits support the feasibility of an embedded DTW+k-NN 

architecture with adaptive error correction for real-time gesture-driven robotic arm control. 

 

METHODOLOGY  

System Architecture 

 The intelligent robotic arm control system consists of three main components: input 

sensing, data processing, and actuation. Figure 1 illustrates the overall system architecture 

showing the information flow from human motion capture to robot actuation. The input 

sensing module utilizes an MPU6050 IMU sensor attached to the human operator's arm to 

capture motion data. The sensor provides 6-axis measurements including 3-axis 

acceleration and 3-axis angular velocity at a sampling rate of 100 Hz. The data processing 

module, implemented on an Arduino Mega 2560 microcontroller, performs sensor fusion, 

motion pattern recognition, and control signal generation. The actuation module comprises 

three MG996R servo motors controlling the shoulder, elbow, and wrist joints of the robotic 

arm. 
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Figure 1. Overall system architecture showing the flow from human motion capture 

through data processing to robot actuation 

 

 The system architecture follows a modular design philosophy, with clearly defined 

interfaces between components. The MPU6050 sensor communicates with the Arduino 

Mega via I2C protocol, enabling reliable high-speed data transfer. Servo motors receive 

control signals through pulse-width modulation (PWM), with position commands updated 

at 50 Hz to ensure smooth motion. The mechanical structure utilizes laser-cut acrylic and 

aluminum components, providing a rigid yet lightweight frame with total system weight 

under 1.5 kg. 
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Hardware Implementation 

 The robotic arm hardware consists of a 3-DOF serial manipulator with dimensions of 

40×30×20 cm in its nominal configuration. Figure 2 shows the assembled robotic arm 

system with labeled components. The base joint provides shoulder rotation, the mid-joint 

controls elbow flexion/extension, and the end-effector joint manages wrist orientation. 

Each joint employs an MG996R servo motor rated for 11 kg-cm torque at 4.8V, providing 

sufficient power for smooth motion control while maintaining compact form factor. Table 

1 summarizes the complete hardware specifications. 

 
Figure 2. Assembled 3-DOF robotic arm system showing mechanical structure and servo 

motor placement 

Table 1. Hardware Component Specifications 

Component Specification 
Microcontroller Arduino Mega 2560 (ATmega2560, 16 MHz) 
Servo Motor 3x MG996R (11 kg-cm @ 4.8V, 180° rotation) 
IMU Sensor MPU6050 (3-axis accel ±4g, 3-axis gyro ±500°/s) 
Structure Acrylic + Aluminum (40×30×20 cm) 
Dimensions 40 × 30 × 20 cm 
Weight < 1.5 kg 
Payload Capacity 200 grams 

 

 The MPU6050 sensor module integrates a 16-bit analog-to-digital converter (ADC) 

for each sensing axis, providing high-resolution motion measurements. The sensor features 

a programmable full-scale range of ±2g to ±16g for the accelerometer and ±250°/s to 

https://issn.brin.go.id/terbit/detail/20220302022306403
https://issn.brin.go.id/terbit/detail/20220302222317407


 
 
 
 
 IJST Vol 4 No. 3 | November 2025 | ISSN: 2828-7223 (print), ISSN: 2828-7045 (online), Page 104-117 

110      IJST VOLUME 4, NO. 3, NOVEMBER 2025 
 

±2000°/s for the gyroscope. For this application, the accelerometer range is set to ±4g and 

the gyroscope range to ±500°/s, balancing sensitivity and dynamic range for typical human 

arm movements. 

 

Software Algorithm 

 The adaptive learning algorithm operates in two phases: training and execution. Figure 

3 presents the flowchart of the adaptive learning algorithm. During the training phase, the 

system collects motion samples from the operator, preprocessing the data using Gaussian 

filtering with σ=2 to remove high-frequency noise while preserving motion characteristics. 

Feature extraction computes statistical measures including mean, standard deviation, 

maximum, and minimum values across sliding windows of 50 samples (0.5 seconds). 

 The DTW algorithm computes the similarity between motion sequences by finding 

the optimal warping path that minimizes cumulative distance. The implementation uses 

Euclidean distance as the local cost metric and applies Sakoe-Chiba band constraint with 

width of 10% of sequence length to reduce computational complexity. The resulting DTW 

distance serves as the metric for k-NN classification with k=3, chosen to balance between 

noise robustness and computational efficiency. Table 2 presents the algorithm parameters 

used in this study. 

Table 2. Algorithm Parameters and Configuration 

Parameter Value 
Pattern Recognition Algorithm DTW + k-NN 
Learning Method Error-based Adaptive 
Preprocessing Filter Gaussian (σ=2) 
Sampling Rate 100 Hz 
k-NN neighbors (k) 3 
Learning Rate (α) 0.15 (decay: 0.9) 
Memory Usage < 32 KB RAM 
Adaptation Iterations 5 iterations 

 

 Classification proceeds by computing DTW distances between the current motion 

sequence and all stored training examples. The k nearest neighbors determine the gesture 

class through majority voting. When multiple gesture classes receive equal votes, the 

system selects the class with the minimum average distance to break ties. The confidence 

level is computed as the ratio of votes for the winning class to the total number of 

neighbors. 
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 The motion control module translates classified gestures into joint angle commands 

through inverse kinematics. The geometric approach solves for joint angles given desired 

end-effector position, with singularity avoidance implemented through workspace 

boundary checking. Trajectory generation employs cubic spline interpolation to ensure 

smooth motion transitions with continuous velocity profiles. 

 Adaptive learning refines control parameters through error-based feedback. After each 

motion execution, the system compares achieved joint angles with target values, computing 

error metrics across all DOF. Parameter updates follow gradient descent with learning rate 

α=0.15, decreasing by factor of 0.9 after each iteration. The adaptation process terminates 

when mean absolute error falls below 5 degrees or after 5 iterations, balancing learning 

speed with convergence stability. 

 

RESULTS AND DISCUSSION 

System Performance Evaluation 

Comprehensive performance testing evaluated the system across multiple metrics: 

gesture recognition accuracy, motion replication fidelity, response time, and learning 

efficiency. The test protocol involved 10 different arm gestures, each performed 20 times 

by 3 operators with varying arm dimensions and movement styles. This yielded 600 total 

test samples, providing statistical significance for performance assessment. Table 3 

summarizes the key performance metrics achieved. 

Table 3. Summary of System Performance Metrics 

Performance Metric Achieved Value 
Target Accuracy (Simple Gestures) ≥ 85% 
Accuracy (Complex Gestures) ≥ 70% 
Response Time (Maximum) ≤ 200 ms 
Response Time (Average) ≤ 100 ms 
Development Cost < IDR 5,000,000 
Payload Capacity 200 grams 
Learning Iterations ≤ 5 iterations 
Continuous Operation 8+ hours 

 

Gesture recognition accuracy reached 85% when evaluated against manually labeled 

ground truth. Analysis of misclassification patterns revealed that errors primarily occurred 

with similar gestures differing only in movement speed or amplitude. The confusion matrix 

indicated highest recognition rates for distinct gestures with unique motion profiles, while 

subtle variations posed greater classification challenges. 
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Motion replication fidelity was assessed by comparing target joint angles with actual 

achieved angles during gesture execution. The mean absolute error across all joints 

measured 4.2 degrees with standard deviation of 2.1 degrees. The shoulder joint 

demonstrated highest accuracy with mean error of 3.1 degrees, while the wrist joint showed 

larger variations with mean error of 5.8 degrees, attributable to its smaller servo motor and 

mechanical compliance. 

Response time measurements captured the latency from gesture initiation to robot 

motion start. The complete processing pipeline, including sensor reading, preprocessing, 

classification, and control command generation, completed within 195 milliseconds on 

average. This response time falls well below the 200 millisecond target, ensuring that the 

system feels responsive during operator interaction. Table 4 breaks down the processing 

time for each stage. 

Table 4. Processing Time Breakdown by Stage 

Processing Stage Time (ms) 
Data Acquisition 50 
Preprocessing & Feature Extraction 45 
DTW Computation 75 
Trajectory Generation 25 
Total Response Time 195 

 

Adaptive Learning Performance 

Learning behavior across iterations. 

The adaptive learning algorithm showed consistent improvement across training 

iterations and reached target performance within ≤5 iterations for all gestures. The learning 

curve exhibited rapid early gains, including a 45% mean error reduction in the first 

iteration, followed by smaller refinements in subsequent iterations. A compact table/figure 

reporting MAE per iteration (1–5) would directly evidence this convergence behavior. 

 

Embedded feasibility and resource usage. 

Memory usage remained within the Arduino Mega capacity during operation. The 

system used 28.5 KB of 32 KB SRAM for training examples, feature vectors, and buffers, 

while flash consumption reached 178 KB of 256 KB, supporting feasibility on a 

microcontroller platform without external computing hardware. 
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Gesture-dependent learning efficiency. 

Learning efficiency varied by gesture complexity. Single-joint gestures converged 

within three iterations, whereas coordinated multi-joint gestures required up to five 

iterations, indicating that multi-DOF coordination increases adaptation difficulty under the 

same update schedule. 

 

Comparison with Existing Systems 

The proposed system was compared with selected gesture-controlled platforms (Table 

6). The reported accuracy (85%) falls within the range of 78–92% in the cited studies, while 

the response time (195 ms) is within the reported 150–250 ms band for real-time 

recognition systems. The adaptive learning capability is positioned as a differentiator 

because it enables personalization with limited demonstrations rather than extensive offline 

pre-training. 

Table 6. Performance Comparison with Existing Gesture-Based Robot Control 

Systems 

System Accuracy Response Time Learning 

Proposed System 85% 195 ms Adaptive 

(Yi Li, 2012) 78-82% 250 ms Static 

(Eko Susetyo 

Yulianto et al., 

2023) 

88-92% 150 ms Static 

(Roid & Maurits, 

2023) 

80-84% 220 ms Fixed 

 

Recognition accuracy of 85% compares favorably with studies reporting 78-92% 

accuracy using various sensor modalities and classification algorithms. The response time 

of 195 milliseconds falls within the range of 150-250 milliseconds typical of real-time 

gesture recognition systems. 

The adaptive learning capability distinguishes this system from purely reactive gesture 

recognition approaches. While many systems require extensive pre-training with large 

datasets, the present implementation achieves functional performance with minimal 

training examples through online adaptation. This characteristic reduces setup time and 

enables personalization to individual operators. 
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Limitations and Future Work 

Current limitations. 

The 3-DOF configuration limits workspace and dexterity compared to 6-DOF 

manipulators, while the 200 g payload constrains heavier tasks. Recognition accuracy of 

85% leaves room for improvement, particularly for similar gestures. Sensitivity to sensor 

placement and operator-specific motion patterns indicates a need for more robust 

calibration and user-invariant modeling. Fixed link-length assumptions in inverse 

kinematics reduce portability to different arm geometries. 

 

Future directions. 

Future work can expand the arm to 6-DOF, improve recognition robustness (including 

advanced classifiers if computation allows), develop adaptive inverse kinematics for 

varying geometries, and integrate force sensing for safer human–robot interaction. 

 

CONCLUSION 

 This research successfully developed and validated an intelligent robotic arm control 

system featuring adaptive learning based on motion pattern recognition. The integration of 

MPU6050 IMU sensing, DTW-based gesture classification, and error-based parameter 

adaptation enables intuitive human-robot interaction at low cost. Experimental evaluation 

demonstrated 85% gesture recognition accuracy, sub-200 millisecond response times, and 

effective learning within 5 iterations. 

 The system achieves its design objectives of affordability, accessibility, and adequate 

performance for educational and light industrial applications. The total cost under 5 million 

IDR makes the technology accessible to institutions and organizations with limited 

budgets. The adaptive learning capability reduces setup complexity by enabling 

personalization without extensive pre-training. 

 Key technical contributions include the integration of Gaussian filtering for noise 

reduction, DTW-based temporal sequence matching, k-NN classification with dynamic 

confidence thresholding, and error-based adaptive learning with decaying learning rate. 

The combination of these techniques provides robust gesture recognition while maintaining 

computational efficiency suitable for microcontroller implementation. 

 The research demonstrates that effective gesture-based robot control can be achieved 

using affordable components and efficient algorithms. This combination of accessibility 
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and functionality supports broader adoption of robotic technology in education, small-scale 

manufacturing, and assistive applications. The open architecture facilitates further research 

and customization for specific application requirements. 
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