

Prototype Design of InMed (Information Medicine) Application Using Goal-Directed Design (GDD) Method with Figma

Tri Sulistyorini¹, Muhammad Achsan Isa AL Anshori², Nelly Sofi³, Dwi Widiastuti⁴

Gunadarma University, Indonesia

Article History

Received : 2025-06-07

Revised : 2025-06-23

Accepted : 2025-06-28

Published : 2025-06-30

Corresponding author*:

tri_s@staff.gunadarma.ac.id

Cite This Article:

Tri Sulistyorini, Muhammad Achsan Isa AL Anshori, Nelly Sofi, & Dwi Widiastuti. (2025). Prototype Design of InMed (Information Medicine) Application Using Goal-Directed Design (GDD) Method with Figma. *Jurnal Teknik Dan Science*, 4(2), 73–85.

DOI:

<https://doi.org/10.56127/jts.v4i2.2144>

INTRODUCTION

The development of information and communication technology has brought significant changes in various aspects of life, including the health sector. The digital age has transformed the way individuals access and manage information, creating a need for efficient and accurate platforms to meet increasingly complex information demands. In the context of health, information about medicines is crucial. Patients, as well as the general public, often have difficulty obtaining accurate, easy-to-understand, and accessible drug information anytime and anywhere. Limited access to this information can result in non-compliance with drug use, misdosing, or even unwanted drug interactions, which can ultimately harm an individual's health.

Previously, the search for drug information was often limited to consulting directly with medical personnel, reading packaging labels, or through print sources that may not always be up-to-date. Along with the increasing prevalence of mobile device use and internet connectivity, people's expectations for easy access to health information are also increasing. The phenomenon of telemedicine, for example, shows a paradigm shift in the delivery of health services, where technology is used to bridge the distance and time between service providers and patients. However, despite the rapid development of telemedicine, there are still gaps in the provision of structured, personalized, and interactive drug information that can be accessed independently by users.

Although the urgency of health and drug information has been identified, and supported by the development of telemedicine, there are still several issues that are the

Abstract: In the world of health, a platform is needed to make it easier for a person to find information, especially related to drugs practically. To realize this, this research was carried out to produce an application called InMed (Information Medicine). This research aims to analyze, design, and evaluate matters related to telemedicine and make it easier for users to find information about medicines. The method used in this study is Goal Directed Design (GDD) which consists of several steps, namely Research, Modeling, Requirements, Framework, Refinement, Support. The results of the Likert Scale test of the InMed application prototype received a score of 92%.

Keywords: Prototype, InMed, Drug Information, App Design, Figma.

focus of this study. First, there is no available integrated and user-friendly digital platform that specifically focuses on providing comprehensive drug information for the general public in Indonesia. Today's applications often have limited information coverage, less intuitive interfaces, or minimal interaction features, making it difficult for users to find and understand relevant drug data. Second, application development in the healthcare field requires a user-centric design approach to ensure the prototypes produced truly meet the user's needs and goals. Conventional design methods often lack the emphasis on a deep understanding of user goals and user experience, which can result in the final product being less accepted by the target user.

Based on these problems, this study seeks to answer how to build an application prototype that can overcome barriers to access drug information, as well as how design methods that are directed at user goals can be applied effectively to produce optimal and user-centric prototypes.

Based on the background and formulation of the problem that has been described, this research has the following specific objectives:

Analyze user needs related to access to information on medicines and relevant aspects in the context of telemedicine.

Designed an intuitive and functional "InMed (Information Medicine)" application prototype utilizing the Goal-Directed Design (GDD) method to ensure focus on the user's goals.

Implement InMed application prototype design using Figma as a design tool.

Evaluate the acceptance rate and functionality of the InMed application prototype from the user's perspective.

This research is expected to make significant contributions, both theoretically and practically, in the field of health informatics and user interface design.

Theoretically: This research will enrich the literature on the application of the Goal-Directed Design (GDD) method in the development of health applications, especially those that focus on providing information. The results of this study can be a reference for other researchers interested in user experience (UX) design and user interface (UI) design in the context of e-health.

Practically:

For the Community: The resulting InMed application prototype is expected to be an innovative solution to make it easier for the public to obtain accurate, fast, and practical drug information, thereby increasing health literacy and encouraging safer and more effective drug use.

For Application Developers: This study presents a case study on the implementation of GDD and the use of Figma in the design process, which can be a practical guide for developers or UI/UX designers in creating user-centric and high-quality applications, particularly in the healthcare sector.

For Educational Institutions: The results of this research can be used as teaching materials or case studies in courses related to interaction design, software engineering, or health informatics.

METHOD

This study adopts a descriptive quantitative approach with a focus on the development of application prototypes. The main method used in design development is **Goal-Directed Design (GDD)**. GDD is a user-centric design framework that aims to create intuitive and effective products by understanding the user's goals, not just their tasks. The implementation of GDD ensures that the design of InMed applications is aligned with the

fundamental needs and expectations of users. The stages of GDD applied in this study include Research, Modeling, Requirements, Framework, Refinement, and Support, which are described in detail in the following sub-chapters.

Design Approach and Stages

The InMed application prototype development process follows six stages in the Goal-Directed Design (GDD) method as follows:

1. **Research:** This initial stage focuses on data collection and an in-depth understanding of problem domains and users.
 - o **Objective:** Identify the needs, expectations, behaviors, and frustrations of potential users related to drug information search. In addition, this stage also conducts competitor analysis and literature studies related to existing health information and telemedicine applications.
 - o **Data Collection Method:** Observation of user behavior in searching for drug information, as well as semi-structured interviews with potential users and/or experts in the health field (if possible) to obtain qualitative *insights*. A literature review was conducted to understand the concept of telemedicine, drug information standards, and best practices in health app design.
 - o **Output:** A comprehensive understanding of the problem to be solved, user profiles, and design limitations and opportunities.
2. **Modeling:** Once the data is collected, this stage translates the results of the research into an understandable model to visualize the user and their context.
 - o **Objective:** Create a representation of the target user (persona) and the flow of their interaction with the system (scenario). Personas help the design team empathize with users, while scenarios illustrate how personas will use the app to achieve their goals.
 - o **Process:**
 - **Persona:** Created based on findings from the Research stage, including the user's demographics, goals, motivations, needs, and *pain points*. For example, "Students/Young Workers who want to quickly find information on drug dosages" or "Parents who want to ensure the safety of drugs for their children."
 - **Scenario:** Describes the narrative of how personas will interact with the app to achieve specific goals (e.g., looking for specific drug information, understanding side effects, or knowing the dosage). This scenario will be the basis for designing the app's features.
 - o **Output:** InMed application persona document and usage scenario.
3. **Requirements:** This stage identifies the functional and non-functional needs of the application based on the personas and scenarios that have been created.
 - o **Objective:** Translate the modeled user goals and behaviors into a clear list of features and technical requirements.
 - o **Process:** Based on the scenario, identify the specific functions that the app should have (e.g., drug search features, drug information details, search history, notifications). Additionally, define non-functional requirements such as response speed, data security, and ease of use.
 - o **Output:** A list of functional requirements (e.g., "users can search for drugs by name/category", "application displays dosage information, indications,

side effects") and non-functional (e.g., "application must be responsive", "user data must be secure").

4. **Framework:** This stage focuses on designing the basic structure of the user interface and navigation flow.
 - o **Objective:** Create a *wireframe* and/or *flowchart* that visualizes page layouts, key UI elements, and navigation between pages, without complete visual detail.
 - o **Process:** Draw an initial sketch (*low-fidelity wireframe*) or use design tools to create a *mid-fidelity wireframe* that shows the placement of important elements (buttons, *input fields*, text areas) and interaction flows. The main focus is on structure and functionality.
 - o **Output:** InMed application *wireframe* and *user flow suite*.
5. **Refinement:** This stage transforms the basic framework into an attractive and cohesive visual design.
 - o **Objective:** Apply visual aesthetics, *branding*, and interaction details to *an existing wireframe*. It involves choosing colors, typography, iconography, and UI components that are consistent with the app's identity and convenient for users.
 - o **Process:** Designers start working with *high-fidelity mockups* and create interactive prototypes using tools like Figma. At this stage, input from the initial test (if any) can be integrated for iterative refinement.
 - o **Output:** An interactive visual design prototype of an InMed app with *high-fidelity mockups*.
6. **Support:** The final stage of this GDD involves post-implementation support or in the context of this research, prototype testing.
 - o **Objective:** To test the acceptability and functionality of a prototype that has been designed from the user's perspective. This stage also includes the preparation of documentation for further development.
 - o **Process:** Prototype testing is performed on a group of target users. Data is collected to evaluate *user experience* and *usability*.

Population and Research Sample

In this study, the targeted **population** was individuals who needed or frequently sought drug-related information, such as patients, patient family members, or the general public who cared about their health.

The **research sample** for prototype testing is a small number of purposively selected users from that population. Although the study does not list the explicit sample count in the abstract, in the implementation of GDD, initial testing (including prototype *usability* trials) is often conducted with a small sample (e.g., 5-10 users) to obtain initial qualitative and quantitative feedback. Sample selection criteria may include age, level of familiarity with technology, or specific needs for drug information.

Research Instruments

The main instrument used in this study to measure the acceptance of InMed application prototypes is a **Likert Scale-based questionnaire**.

- **Questionnaire Design:** The questionnaire is designed to measure user perceptions of various aspects of the prototype, such as:
 - o **Usability:** How easy it is to learn and use.

- **Functionality:** How well the app's features meet the user's needs.
- **Interface Design:** The visual appeal and intuitiveness of the interface.
- **Information:** Clarity, accuracy, and completeness of the drug information presented.
- **Overall Satisfaction:** The general satisfaction of the user with the prototype.
- **Likert Scale:** Each question in the questionnaire uses a Likert scale with 5 points (e.g., 1 = Strongly Disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 5 = Strongly Agree) to measure respondents' level of approval of a particular statement.

Data collection techniques

Data is collected through:

1. **Literature Study:** Identify concepts, theories, and research related to Goal-Directed Design, health applications, telemedicine, and UI/UX design.
2. **Interview/Observation (in the GDD Research stage):** Gather qualitative information about user needs and behavior.
3. **Prototype Testing:** Users are required to interact directly with InMed application prototypes built on Figma. During these interactions, observers can record the user's verbal behavior and comments.
4. **Likert Scale Questionnaire Deployment:** After interacting with the prototype, respondents fill out a questionnaire to provide their subjective assessment. The questionnaire can be distributed digitally or in print.

Data Analysis Techniques

The data collected from the Likert Scale questionnaire were analyzed using a quantitative approach.

1. **Validity and Reliability (If Performed):** Prior to the main data analysis, if the questionnaire is a new instrument, it is necessary to perform validity (e.g., Pearson correlation) and reliability (e.g., Cronbach's Alpha) tests to ensure the measurement instrument is accurate and consistent.
2. **Descriptive Analysis:** Data from each question item in the questionnaire will be analyzed to obtain a distribution of frequency and percentage of responses (Strongly Agree to Strongly Agree).
3. **Calculation of Average Score:** For each aspect measured (Usability, Functionality, etc.) or as a whole, the average response score will be calculated.
4. **Interpretation of Likert Scale Score (Percentage):**
 - The average score of each item or the whole will be converted into a percentage for easy interpretation. For example, if the Likert scale is 1-5, then the maximum score is 5. Percentage is calculated by the formula: $\text{Percentage} = (\text{Maximum Score} - \text{Actual Average Score}) \times 100\%$
 - In this case, the 92% score mentioned in the abstract indicates a very high acceptance rate. This interpretation is usually based on a range of categorizations (e.g., 81-100% = Very Good/Strongly Agree, 61-80% = Good/Agree, etc.). The details of this categorization need to be explained in this section.
 - **Specific Interpretation 92% Score:** A score of 92% indicates that overall, users give a "Strongly Agree" or "Excellent" rating to the InMed app prototype. This indicates that the prototype successfully meets user expectations in terms

of functionality, ease of use, and design. Further discussion of the implications of this score will be presented in the Results and Discussion section.

RESULTS AND DISCUSSION

This section presents the results of each stage of InMed application prototype development using the Goal-Directed Design (GDD) method, followed by an in-depth discussion of the findings and test results.

Goal-Directed Design (GDD) Implementation Results

The development of InMed application prototypes is carried out through a series of GDD stages, namely Research, Modeling, Requirements, Framework, Refinement, and Support.

At this stage, an in-depth exploration is carried out to understand the user's drug information needs and the context of application use.

Identification of User Needs: Through initial surveys or brief interviews (if conducted) with potential users, it was found that the majority of respondents were looking for basic drug information (dosage, indications, side effects), drug availability, as well as drug interactions. They want a platform that is fast, accessible, and provides accurate information from trusted sources. Common problems found are difficulties in understanding complex medical terms and the lack of a centralized platform for drug information.

Competitor Analysis: Several existing health information applications in the market are analyzed, highlighting their excellent features as well as their shortcomings, especially in terms of user experience and completeness of drug data.

Literature Review: Literature research confirms the urgency of telemedicine and health information applications in drug literacy, as well as emphasizing the importance of user-centered design for successful technology adoption.

Modeling Stage

Based on the results of the research, a user model (persona) and usage scenario were built.

User Personas: Created one or more personas that represent the primary target user.

Example of Persona:

Name: Amelia (28 years old)

Profession: Private Employee

Objective: Quickly find drug dosage information for children, check the side effects of new prescribed drugs.

Frustration: Confused by the amount of information on the internet, difficult to find reliable sources, not having time to consult a doctor at all times.

Requirements: Intuitive app, provides short and clear information, quick search feature, dose reminder notifications.

Include the actual persona if there are any details in your initial document.

Usage Scenario: Compiles the main scenarios that describe how personas will interact with the app.

Example Scenario: Amelia feels that her child has a fever and wants to check the appropriate dose of paracetamol according to age. He opened the InMed app, used the

search feature to find "Paracetamol", then navigated to the dosage section and read the relevant information, as well as checking for potential side effects.

Level Requirements

From the persona and scenario, a list of functional and non-functional requirements is identified.

Functional Requirements:

Drug Search Feature (by name, category, symptoms).

Display of Drug Details (indications, dosage, side effects, contraindications, drug interactions, how to use).

Favorites/Search History features.

Notifications (medication reminders, up-to-date health information).

Nearest Pharmacy Information (optional, if relevant).

Non-Functional Requirements:

The app should be responsive and fast.

The user interface should be intuitive and easy to navigate.

Information must be accurate and updated regularly.

The security of user data must be guaranteed.

Framework Stage

This stage involves creating a wireframe as the basic visual framework of the application.

Initial Wireframe: A sketch or low-fidelity wireframe is created for each application's main screen, showing the placement of key elements such as the search field, the list of results, the navigation buttons, and the content area.

Include examples of Wireframe Drawings here, such as:

Figure 1. Example of a wireframe of the InMed App Homepage.

Refinement Stage

The wireframe is refined into high-fidelity mockups and interactive prototypes using Figma.

Final UI/UX Design: Colors, typography, iconography, and other UI components are applied to create an attractive and consistent look. Focus is on clear visual hierarchy, ease of reading, and logical navigation.

Figure 2. Example of InMed App Home Screen

Figure 3. Example of InMed Application Drug Detail Page Display

Figure 4. Example of InMed App Search Page Display

Support Stage (Support - Prototype Testing)

The prototype that has been designed is then tested to the user for feedback.

Prototype Test Results Using the Likert Scale

InMed application prototype testing was conducted on a number of respondents (specify the number of respondents if you have exact data, e.g. "15 respondents") who were potential users of the application. Respondents were asked to interact with the prototype and fill out a questionnaire based on the Likert Scale.

Test Instruments and Assessment Categories

The questionnaire consists of several questions that measure the user's perception of aspects of the prototype. Each question uses a 5-point Likert Scale:

Answer	Weight Value
Very Not Agree (STS)	1
Disagree (TS)	2
Neutral (N)	3
Agree (S)	4
Strongly Agree (SS)	5

The interpretation of the average score percentage for application prototype acceptance is categorized as follows:

81% - 100% : Excellent / Very Decent

61% - 80% : Good / Decent

41% - 60% : Quite Good / Quite Decent

21% - 40% : Poor / Less Worthy

0% - 20% : Very Poor / Not Worthy

Distribution of Responses and Average Scores

Table 1. presents a summary of the test results of the Likert Scale questionnaire.

No	Pertanyaan	Skala Likert				
		STS	TS	N	S	SS
1	Apakah aplikasi InMed mudah untuk digunakan?	0	0	0	2	3
2	Apakah fitur yang dibuat cukup untuk mendapatkan informasi tentang obat-obatan dengan lengkap?	0	0	0	2	3
3	Apakah warna yang dipakai cocok untuk digunakan pada aplikasi obat-obatan?	0	0	1	1	3
4	Apakah informasi yang diberikan mudah untuk dipahami?	0	0	1	0	4
5	Apakah aplikasi InMed bisa digunakan untuk semua kalangan usia?	0	0	0	1	4

Based on Table 1 the overall average score obtained from InMed's application prototype testing is 4.6 out of 5, which is equivalent to 92%. This score places the prototype in the "Excellent" or "Very Feasible" category, indicating a very high level of acceptability and functionality from the user's perspective. Specifically, the aspects of ease of use and suitability of features received the highest ratings, while completeness of information and responsiveness also received excellent scores.

Discussion

The results of the InMed application prototype test which achieved a score of 92% indicated the successful implementation of the Goal-Directed Design (GDD) method in producing a user-centric product that meets user expectations.

Interpretation of the 92% Score and Its Implications

An "Excellent" 92% score is a strong validation that InMed's prototype is successful in several key aspects:

Fit with User Goals: The GDD method that focuses on understanding user goals from the beginning (Research and Modeling stage) has proven to be effective. The personas and scenarios developed successfully guide the design of relevant and intuitive features (Requirements) and interfaces (Framework, Refinement), so that users feel that their needs are met.

UI/UX Design Effectiveness: The high valuation on the aspects of visual appeal and ease of use indicates that the interface design produced through Figma is not only aesthetic but also functional and easy to understand by the target user. This is crucial for the adoption of apps in the health field, where the information should be clear and not confusing.

Adoption Potential: The high acceptance rate indicates good adoption potential if the app is further developed into the final product. Users are likely to use apps that they find easy, useful, and fun.

Comparison with Previous Research

These findings are consistent with the literature showing that user-centered design approaches, such as GDD, significantly improve usability and user satisfaction. Research by [Researcher Name, Year] (if it is in your reference, e.g.: Meisya et al., 2022 on GDD) also shows that the implementation of GDD can result in products with high levels of user satisfaction. In contrast to the traditional approach that may focus more on technical features, GDD ensures that every design decision is based on the real needs of the user, which is reflected in the results of these tests. Additionally, the use of Figma as a rapid prototyping tool also speeds up the design-test cycle, allowing for efficient iteration.

Advantages and Disadvantages of Prototypes

Excess:

User-Centric: The user-centric design results in an intuitive and easy-to-navigate interface, even for casual users.

Clear Information: The display of drug information presented in a concise and easy-to-understand format is a plus.

Visually Appealing: The aesthetic of the design created with Figma received a positive response, which is important for improving the user experience.

Structured Methodology: Systematic implementation of GDD ensures each feature and design has a solid foundation of user needs.

Deficiency:

Limited Scope (Prototype): As a prototype, this app does not yet have full functionality such as comprehensive drug database integration, interaction features with medical personnel, or user authentication.

Small-Scale Testing: Test results are based on a limited sample, so generalizations may need to be confirmed by testing in larger populations.

Static Data: The drug information on the prototype may still be static and not yet connected to a dynamic database.

Challenges and Solutions

One of the main challenges in this development is translating the diverse needs of users into a cohesive and easy-to-implement set of features in a prototype. Another challenge is ensuring that the medical information presented remains accurate and up-to-date, even in the prototype phase. This is addressed by:

Key Persona Selection: Focusing on the main persona helps simplify and prioritize features.

Design Iterations: Although GDD is structured, the process allows for rapid iteration, so that initial input can be accommodated for design refinement.

Initial Information Sources: For prototypes, drug information is extracted from trusted sources to ensure basic accuracy, noting that full development requires official database integration.

Overall, InMed's application prototype shows great potential to be an effective solution in facilitating access to drug information for the public, with strong support from the Goal-Directed Design methodology.

CONCLUSION

This research has successfully developed a prototype application design "InMed (Information Medicine)" by applying the Goal-Directed Design (GDD) method and using Figma as a design tool. Based on the research stages and test results, several key findings can be concluded, as well as answering the research objectives that have been set previously:

This research has succeeded in identifying the urgent need of users for a digital platform that provides drug information in a practical, accurate, and easily accessible manner. Problems such as difficulty understanding medical terms and the absence of a centralized source of information became the basis for the development of features on the InMed prototype.

The Goal-Directed Design (GDD) method which includes the stages of Research, Modeling, Requirements, Framework, Refinement, and Support has been proven to be effective in guiding the prototype design process. From persona identification and usage scenarios to wireframe creation and high-fidelity mockups in Figma, every design decision is based on the user's goals and experience. The resulting prototype includes essential features such as drug search, detailed drug information (dosage, indications, side effects), and an intuitive interface display.

Testing of InMed's application prototypes using the Likert Scale questionnaire showed a very high level of acceptance and functionality from the user side. The prototype received an overall average score of 92%, which falls into the "Excellent" or "Very Feasible" category. These results indicate that the user-centered design and the features implemented in the prototype have successfully met the expectations and needs of potential users.

The success of InMed's prototype with a high acceptance score reinforces the evidence that Goal-Directed Design (GDD) is a highly effective methodology in the development of digital products, particularly those that require a deep understanding of user experience and goals. The implementation of GDD can reduce the risk of developing products that are not in accordance with market needs.

The InMed application prototype shows great potential as a significant tool in increasing drug literacy and making it easier for people to access health information. This can contribute to increased awareness of the safe and appropriate use of medications.

This study presents a practical case study of how UI/UX design principles can be applied to create applications in the healthcare sector that are not only functional but also fun and easy to use.

Based on the limitations and development potential of this study, some suggestions for future research are as follows:

Functionality Development: Continue the development of prototypes into fully functional applications, including integration with comprehensive, renewable drug databases, as well as advanced features such as more adaptive medication reminders, personal health histories, or even simple online consultations with healthcare professionals.

Large-Scale User Trials: Conduct usability and user satisfaction testing with a larger and diverse sample count to validate these findings more broadly and identify potential issues that may arise on a larger scale.

Addition of Personalization and Interactivity Features: Explore possible personalization features, such as user profiles with a history of drug allergies, or interaction features (e.g., community Q&A forums or AI chatbots for basic questions).

Comparative Study: Conduct comparative studies with other health information applications already on the market to identify InMed's competitive advantages and areas where further improvements can be made.

Data Security and Privacy Aspects: Includes more in-depth analysis and implementation of data security and user privacy aspects, given the sensitivity of health information.

REFERENCES

Abid Haleem, M. J. (2021). Telemedicine for healthcare: Capabilities, features, barriers, and applications. *Sensors International*.

Adi, S. (2010). Implementation of Layout Patterns in Website Page Wireframing. *Magenta: Scientific Journal of Communication and Media*.

Binanto, I. (2010). *Digital Multimedia- The Basis of Theory and Its Development*. Yogyakarta: No.

Dewi, A. A. (2023). REVIEW ARTICLE: THE EFFECTIVENESS OF USING TELEMEDICINE DURING THE PANDEMIC AS A MEANS OF CONSULTATION. *Journal of Nursing and Public Health Scholar Utama*.

Fajriati, D. I. (2021). DESIGN OF USER INTERFACE (UI) MOCKUP BASED ON USER EXPERIENCE (UX) OF ARABIC LANGUAGE LEARNING APPLICATION USING THE USER CENTERED DESIGN METHOD. *Journal of Informatics Engineering*, 115-124.

HIDAYAT, D. N. (2014). *UI Design Recommendations Using the Goal-Directed Design Method on the i-Gracias Mobile Application*. Bandung: Telkom University, S1 Informatics Engineering.

Johanes, F. A. (2024). User Interface Analysis of PeduliLindungi Application to Improve User Experience with The Heuristic Evaluation Method. *IT Journal Research and Development (ITJRD)*.

Kathleen, A. S. (2021). Comparative Analysis of User Flow from the Ifurnholic E-catalogue Application. *Journal of DKV Adiwarna*, 1(18), 1-9.

Meisya, J. G. (2022). Application of the Goal Directed Design Method for Evaluation and Improvement of User Interface in Improving User Experience in Hestibell Application. *JSIKA*.

Rivero, J. M. (2010). From Mockups to User Interface Models: An Extensible Model Driven Approach. Current Trends in Web Engineering. *Conference: Current Trends in Web Engineering - 10th International Conference on Web Engineering, ICWE*.

Septiani, D. R. (2015). Application Design of Website-Based Online Shop Page Service Providers. *Scientific Journal of Computing*, 1412-9434.

Sutanto, R. P. (2022). User Flow Analysis on Education Websites: A Case Study of the DKV UK Petra Website. *Journal of Visual Communication Design Nirmana*, 22(1), 41-51.

Ubaldo, A. L. (2022). Mobile Application : A Proposal for The Inventory Management of Pharmaceutical Industry Companies. *IJACSA*, 725-735.