Perencanaan Pemasangan Pembangkit Listrik Tenaga Surya (PLTS) pada Gedung Departement Teknik Nuklir dan Teknik Fisika Berdasarkan Data Radiasi Matahari dari Aplikasi Revit

Authors

  • Ziaul Fikar Universitas Muhammadiyah Bima
  • M. Deta Zulfikar Rahman Universitas Muhammadiyah Bima
  • Sofyan Winardin Universitas Muhammadiyah Bima

DOI:

https://doi.org/10.56127/jts.v5i1.2487

Abstract

Electrical energy plays a very important role in human life, as almost all aspects of daily activities depend on it. Therefore, the provision of sufficient and sustainable electrical energy is a key factor in improving the quality of human life. Most of the electricity supply in Indonesia still relies on fossil fuels, which are one of the causes of the increase in the Earth’s atmospheric temperature; therefore, the use of carbon-based energy must be reduced. Energy from sunlight can be utilized by developing a Solar Power Plant (PLTS) to reduce the consumption of carbon-based energy. The building selected for the installation of the Solar Power Plant is the Department of Nuclear Engineering and Engineering Physics (DTNTF) building. The DTNTF building is one of the facilities located within the Faculty of Engineering, Universitas Gadjah Mada. On average, almost all buildings at Universitas Gadjah Mada (UGM) are equipped with adequate air conditioning (AC) systems. More than 50% of the electrical energy consumption in UGM buildings is used for cooling lecture rooms and office spaces. Similarly, the DTNTF building is equipped with more than 50 air conditioning units, where each room contains one to two AC units depending on the room size. The remaining electricity consumption comes from office equipment and lighting systems used to illuminate each room in the DTNTF building. Based on these data, the average monthly electricity demand of the DTNTF building ranges from approximately 1,000 kWh to 1,500 kWh. To meet this electricity demand, approximately 30 units of 350 Wp solar panels are required to be installed on the roof of the DTNTF building. Considering the average daily solar irradiation duration in Indonesia of about 5 hours per day, under ideal conditions a 350 Wp solar panel receiving 5 hours of sunlight per day would produce 350 W × 5 hours = 1,750 Wh (1.75 kWh). Thus, with 30 solar panels, the solar power plant would generate 52.5 kWh per day.

References

Yuwono S, Diharto D, Pratama NW. Manfaat Pengadaan Panel Surya dengan Menggunakan Metode On Grid. Energi & Kelistrikan. 2021;13(2):161-171. doi:10.33322/energi.v13i2.1537

Manab A, H IT, Rabiula A, Matalata H. Perencanaan Pembangkit Listrik Tenaga Surya Sistem Off-Grid di Desa Bungku Kecamatan Bajubang Kabupaten Batanghari Jambi. J Electr Power Control Autom. 2022;5(2):61. doi:10.33087/jepca.v5i2.78

Fikar MZ, Kholid M, Widiharto A, et al. ANALISIS ENERGI LISTRIK PADA BANGUNAN TERINTEGRASI PHOTOVOLTAIC DENGAN MENGGUNAKAN BIM ELECTRICAL ENERGY ANALYSIS IN BUILDING INTEGRATED PHOTOVOLTAIC USING Prosiding Seminar Nasional Teknik Elektro Volume 4 Tahun 2019. 2019;4:60-63.

Jurnal RT. Perencanaan Penggunaan Plts Di Stasiun Kereta Api Cirebon Jawa Barat. Energi & Kelistrikan. 2018;9(1):70-83. doi:10.33322/energi.v9i1.58

Naim M. Rancangan Sistem Kelistrikan Plts Off Grid 1000 Watt Di Desa Loeha Kecamatan Towuti. Vertex Elektro. 2020;12(01):17-25.

Dan N, Fisika T, Gadjah U. Simulasi sistem energi pada gedung departemen teknik nuklir dan teknik fisika universitas gadjah mada. Published online 2016:23-24.

Abanda FH, Byers L. An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling). Energy. 2016;97:517-527. doi:10.1016/j.energy.2015.12.135

Fitriaty P, Shen Z. Predicting energy generation from residential building attached Photovoltaic Cells in a tropical area using 3D modeling analysis. J Clean Prod. 2018;195:1422-1436. doi:10.1016/j.jclepro.2018.02.133

Yuan H, Wang W, Xu D, et al. Outdoor testing and ageing of dye-sensitized solar cells for building integrated photovoltaics. Sol Energy. 2018;165(February):233-239. doi:10.1016/j.solener.2018.03.017

Ilhami N. Analisa Perancangan Pembuatan Energi Baru Terbarukan Pembangkit Listrik Tenaga Surya Untuk Laboratorium Elektro Fakultas Teknologi Industri Unissula Semarang. Skripsi. Published online 2016:1-23.

Najjar M, Figueiredo K, Palumbo M, Haddad A. Integration of BIM and LCA: Evaluating the environmental impacts of building materials at an early stage of designing a typical office building. J Build Eng. 2017;14(March):115-126. doi:10.1016/j.jobe.2017.10.005

Chiang CT, Chu CP, Chou CC. BIM-enabled Power Consumption Data Management Platform for Rendering and Analysis of Energy Usage Patterns. Procedia Eng. 2015;118:554-562. doi:10.1016/j.proeng.2015.08.480

Zotkin SP, Ignatova E V., Zotkina IA. The Organization of Autodesk Revit Software Interaction with Applications for Structural Analysis. Procedia Eng. 2016;153:915-919. doi:10.1016/j.proeng.2016.08.225

Liu H, Singh G, Lu M, Bouferguene A, Al-Hussein M. BIM-based automated design and planning for boarding of light-frame residential buildings. Autom Constr. 2018;89(February):235-249. doi:10.1016/j.autcon.2018.02.001

Kota S, Haberl JS, Clayton MJ, Yan W. Building Information Modeling (BIM)-based daylighting simulation and analysis. Energy Build. 2014;81:391-403. doi:10.1016/j.enbuild.2014.06.043.

Downloads

Published

2026-02-01

How to Cite

Fikar, Z., M. Deta Zulfikar Rahman, & Sofyan Winardin. (2026). Perencanaan Pemasangan Pembangkit Listrik Tenaga Surya (PLTS) pada Gedung Departement Teknik Nuklir dan Teknik Fisika Berdasarkan Data Radiasi Matahari dari Aplikasi Revit. Jurnal Teknik Dan Science, 5(1), 09–15. https://doi.org/10.56127/jts.v5i1.2487