

JUIT Vol 5 No. 1 | January 2026 | ISSN: 2828-6936 (Print), ISSN: 2828-6901 (online), Page. 163-177

163

Makmun, Edi Sukirman, et al

Chaos-Based Digital Image Encryption Using Arnold’s Cat Map Permutation and
Duffing Map Diffusion: A Python Desktop Implementation

Makmun1*, Edi Sukirman2, Erma Sova3, Muhamad Wahyudi3

Technology Information, Gunadarma University, Depok, Indonesia

INTRODUCTION

Digital images are increasingly used as information media across personal and

institutional activities, ranging from documentation and visual communication to various

information-system services. As a consequence, digital images have become valuable data

assets that are vulnerable to unauthorized access, manipulation, and misuse when stored or

transmitted without adequate protection. Within the information-security perspective, this

Abstract: Digital images are widely used for identification,
communication, and information exchange, yet their large size, high
pixel correlation, and uneven intensity distribution make them
vulnerable to theft, manipulation, and statistical inference, thereby
requiring encryption mechanisms tailored to image characteristics.
Purpose: This study proposes a chaos-based permutation–diffusion
scheme that combines Arnold’s Cat Map for pixel permutation and
the Duffing Map as a keystream generator for diffusion to
strengthen digital image encryption and improve resistance to
unauthorized analysis. Methodology: An experimental quantitative
approach was conducted through the development of a Python-
based desktop application. Ten test images (RGB and grayscale)
with varying resolutions were encrypted and decrypted using
predefined key settings. Security and performance were evaluated
using histogram analysis, entropy, pixel correlation, key sensitivity,
processing time, and key space. Findings: The encrypted images
exhibit near-uniform histograms, entropy values approaching the
ideal for 8-bit images (≈8), and pixel correlation values close to
zero, indicating strong statistical concealment. The scheme also
demonstrates high key sensitivity, where small key changes prevent
meaningful decryption, and a large key space that supports brute-
force resistance. Processing time increases with image size but
remains practically feasible for desktop implementation.
Implications: The proposed scheme can be applied to protect
sensitive image data in local desktop environments and image
exchange scenarios, reducing risks of statistical attacks and brute-
force attempts while maintaining acceptable runtime for common
image sizes. Originality: This study delivers an end-to-end
integration of Arnold’s Cat Map and the Duffing Map within a
permutation–diffusion structure implemented as a Python desktop
application, supported by structured security and efficiency
evaluation, thereby providing a practical and reproducible
contribution to chaos-based image cryptography.

Keywords: Image Encryption; Chaos-Based Cryptography; Arnold
Cat Map; Duffing Map; Permutation–Diffusion; Python.

Article History
Received : January 04, 2026
Accepted : January 25, 2026
Published : January 26, 2026
Available Online:
January 26, 2026

Corresponding author*:
makmun@staff.gunadarma.ac.id

Cite This Article:
Makmun, M., Edi Sukirman,
Erma Sova, & Muhamad
Wahyudi. (2025). Chaos-Based
Digital Image Encryption Using
Arnold’s Cat Map Permutation
and Duffing Map Diffusion: A
Python Desktop Implementation.
Jurnal Ilmiah Teknik, 5(1), 163–
177.

DOI:
https://doi.org/10.56127/juit.v5i
1.2529

https://issn.brin.go.id/terbit/detail/20220308050951950
https://issn.brin.go.id/terbit/detail/20220308100970340
mailto:makmun@staff.gunadarma.ac.id
https://doi.org/10.56127/juit.v5i1.2529
https://doi.org/10.56127/juit.v5i1.2529

JUIT Vol 5 No. 1 | January 2026 | ISSN: 2828-6936 (Print), ISSN: 2828-6901 (online), Page. 163-177

164 JUIT VOLUME 5, NO. 1, JANUARY 2026

condition calls for mechanisms that can preserve confidentiality and prevent unauthorized

parties from deriving meaning from visual content. Cryptography is commonly understood

as an approach that transforms data into an encrypted form that is unreadable without a

valid key (Stallings, 2017) and this principle is highly relevant to digital images as large-

scale data objects (Munir, 2019), including image protection using cryptographic

techniques.

Nevertheless, the characteristics of digital images mean that encryption cannot be

treated in the same way as text encryption. Images typically involve large data volumes,

high pixel correlation, and uneven intensity distributions, so an encryption scheme must

suppress spatial structure and obscure statistical patterns while maintaining computational

efficiency (Liu et al., 2019). Several image-encryption designs emphasize the need to

randomize pixel positions and alter pixel values so that the encrypted output no longer

reflects the visual or statistical traits of the original image (Zhang et al., 2019). In addition,

nonlinear dynamical-system approaches have gained traction because they can produce

seemingly random behavior and strong sensitivity to initial conditions properties that

support key generation and strengthen encryption resistance (Pecora & Carroll, 2015;

Strogatz, 2018). Consistently, chaos-based pseudo-random generator designs have been

reported to produce sequences that are useful for diffusion processes in cryptography

(Krishnamoorthi et al., 2021).

In terms of spatial scrambling, Arnold’s Cat Map is often employed to transform pixel

coordinates so that the positional regularity in an image becomes difficult to recognize, and

it is commonly combined with other mechanisms to enhance overall encryption strength

(Irawan & Rachmawanto, 2022; Rahmawati & Liantoni, 2018; Ratna et al., 2021)

Meanwhile, strengthening the alteration of pixel intensity values can be achieved through

diffusion using a keystream generated by a chaotic system, such as the Duffing Map, which

has been used to support diffusion in image encryption (Zhou et al., 2014) and has

demonstrated good performance in permutation–diffusion structures (Liu et al., 2019). To

ensure practical usability and operability, an encryption scheme also needs to be realized

as stable software, and Python provides an ecosystem that supports desktop application

development along with user interfaces (Grayson, 2020; Sweigart, 2020).

Against this background, this study aims to design and implement a permutation–

diffusion image-encryption scheme that combines Arnold’s Cat Map at the permutation

stage and the Duffing Map as a keystream generator at the diffusion stage. The scheme is

https://issn.brin.go.id/terbit/detail/20220308050951950
https://issn.brin.go.id/terbit/detail/20220308100970340

JUIT Vol 5 No. 1 | January 2026 | ISSN: 2828-6936 (Print), ISSN: 2828-6901 (online), Page. 163-177

165 JUIT VOLUME 5, NO. 1, JANUARY 2026

implemented in a Python-based desktop application and evaluated using histogram,

entropy, pixel correlation, key sensitivity, processing time, and key space as security and

performance indicators (Liu et al., 2019; Zhang et al., 2019; Zhou et al., 2014).

The central argument of this study is that integrating Arnold’s Cat Map and the Duffing

Map can yield stronger image encryption: ACM-based permutation reduces spatial

regularity and weakens pixel correlation, while Duffing-based keystream diffusion

obscures intensity distributions and diminishes the feasibility of statistical analysis. Given

the high parameter sensitivity of chaotic systems, the resulting key space is expected to be

large and decryption infeasible without the correct key (Liu et al., 2019; Rahmawati &

Liantoni, 2018; Zhou et al., 2014). Furthermore, implementing the scheme in a Python

desktop application enables practical testing of both security and efficiency across different

image sizes under realistic usage conditions (Grayson, 2020; Sweigart, 2020).

RESEARCH METHOD

This study adopts a digital image cryptography approach in which image data are

treated as pixel-intensity matrices. Compared with text data, digital images typically have

larger data volumes, strong pixel correlation, and non-uniform intensity distributions.

Therefore, applying conventional block ciphers directly may not be computationally

efficient or statistically optimal for image characteristics, motivating the use of

permutation–diffusion structures that specifically target spatial correlation and intensity

distribution leakage.

At the permutation stage, the proposed scheme employs Arnold’s Cat Map (ACM) to

shuffle pixel positions so that the spatial structure of the original image becomes

unrecognizable. ACM is a two-dimensional chaotic map that is widely used for image

encryption due to its simplicity and strong scrambling capability, while remaining

reversible given the correct iteration setting. For an 𝑁 × 𝑁image, pixel coordinates

(𝑥, 𝑦)are mapped to new coordinates (𝑥!, 𝑦!)using the linear modular transformation in

Equation (1), where 𝑁denotes the image dimension and the number of iterations controls

the scrambling strength.

(𝑥
!

𝑦!) = +1 1
1 2. +

𝑥
𝑦.  𝑚𝑜𝑑 𝑁	

	

https://issn.brin.go.id/terbit/detail/20220308050951950
https://issn.brin.go.id/terbit/detail/20220308100970340

JUIT Vol 5 No. 1 | January 2026 | ISSN: 2828-6936 (Print), ISSN: 2828-6901 (online), Page. 163-177

166 JUIT VOLUME 5, NO. 1, JANUARY 2026

At the diffusion stage, the scheme uses the Duffing Map as a chaotic keystream

generator. Duffing Map originates from the Duffing oscillator and exhibits strong chaotic

behavior and high sensitivity to initial conditions, producing sequences that approximate

random distributions and are suitable for cryptographic diffusion (Liu et al., 2019). The

Duffing Map is defined recursively as shown in Equation (2), where (𝑥", 𝑦")are initial

conditions and (𝑎, 𝑏)are control parameters. In this study, the Duffing system is operated

under parameter settings that are known to induce chaotic behavior (e.g., 𝑎 = 2.75 and 𝑏 =

0.2), as illustrated by the bifurcation behavior in Figure 1 (Krishnamoorthi et al., 2021).

Figure 1. Bifurkasi Duffing Map

To apply the Duffing output to image diffusion, the generated real-valued sequence is

normalized and quantized into the integer range 0–255 to form a keystream matrix

𝐾(𝑖, 𝑗)aligned with image pixel positions. After ACM permutation, the diffusion process

encrypts each permuted pixel value 𝑃!(𝑖, 𝑗)by applying XOR with the corresponding

keystream value, producing the ciphertext pixel 𝐶(𝑖, 𝑗)as shown in Equation (3). Due to the

involutive property of XOR, the same keystream enables correct decryption, while small

key changes result in significantly different keystreams and prevent meaningful

reconstruction (Liu et al., 2019).

RESULT AND DISCUSSION

Functional Validation of the Python Desktop Application and Encryption–

Decryption Output

The proposed permutation–diffusion scheme was implemented as a Python-based

desktop application to verify end-to-end operability and correctness. The application

https://issn.brin.go.id/terbit/detail/20220308050951950
https://issn.brin.go.id/terbit/detail/20220308100970340

JUIT Vol 5 No. 1 | January 2026 | ISSN: 2828-6936 (Print), ISSN: 2828-6901 (online), Page. 163-177

167 JUIT VOLUME 5, NO. 1, JANUARY 2026

interface and workflow are presented in Figure 2 (cryptography application layout) and

Algorithm 1 (Python implementation within the application).

Figure 2. Image Cryptography Application Layout

Algorithm 1

class CryptoApp(tk.Tk):
 def __init__(self, *args, kwargs):
 tk.Tk.__init__(self, *args, kwargs)
 self.title("Aplikasi Kriptografi v9.0 - Final")
 self.geometry("1100x850")
 self.title_font = ("Arial", 18, "bold")

 container = tk.Frame(self)
 container.pack(side="top", fill="both", expand=True)
 container.grid_rowconfigure(0, weight=1)
 container.grid_columnconfigure(0, weight=1)

 self.frames = {}
 for F in (HomePage, EncryptionPage, DecryptionPage, AnalysisPage):
 page_name = F.__name__
 frame = F(container, self)
 self.frames[page_name] = frame
 frame.grid(row=0, column=0, sticky="nsew")

 self.show_frame("HomePage")

The encryption and decryption interfaces are shown in Figure 4 and Figure 5.

Functional testing was conducted on both RGB and grayscale images to confirm that the

system can transform readable images into visually unrecognizable ciphertext and then

reconstruct the original images when the correct key is used. The main test configuration

applied Duffing parameters 𝑎 = 2.75, 𝑏 = 0.2, and Arnold Cat Map iteration 𝑡 = 15. The

datasets used in this evaluation are summarized in Table 1 (RGB images) and Table 2

https://issn.brin.go.id/terbit/detail/20220308050951950
https://issn.brin.go.id/terbit/detail/20220308100970340

JUIT Vol 5 No. 1 | January 2026 | ISSN: 2828-6936 (Print), ISSN: 2828-6901 (online), Page. 163-177

168 JUIT VOLUME 5, NO. 1, JANUARY 2026

(grayscale images), while the qualitative outcomes and per-image processing time are

reported in Table 3 (RGB) and Table 4 (grayscale).

Table 1. Color Image Test Data

Data
test No Original Image Image Name Image Size

(pixel)
Size File

(byte)

1

Image1.jpg 199x199 82.2 KB

2

Image2.png 490x490 514.5 KB

3

Image3.png 502x502 456.98 KB

4

Image4.png 800x800 1.46 MB

5

Image5.bmp 1298x1298 4.82 MB

Table2. Greyscale Image Test Data

Data
test No Original Image Image Name Image Size

(pixel)
Image Size

(byte)

1

Image6.png 199x199 46.09 KB

2

Image7.png 490x490 514.5 KB

https://issn.brin.go.id/terbit/detail/20220308050951950
https://issn.brin.go.id/terbit/detail/20220308100970340

JUIT Vol 5 No. 1 | January 2026 | ISSN: 2828-6936 (Print), ISSN: 2828-6901 (online), Page. 163-177

169 JUIT VOLUME 5, NO. 1, JANUARY 2026

Data
test No Original Image Image Name Image Size

(pixel)
Image Size

(byte)

3

Image8.png 502x502 276.6 KB

4

Image9.png 800x800 974.06 KB

5

Image10.bmp 1289x1289 4.82 MB

Table 3. Results of Encryption and Decryption Testing of Color Images
Name Original

Image
Size Encryption

Result
Descryption

Result
Image1.jpg

199x199

Process time:

0.39 second

Process time:
0.42 second

Image2.png

490x490

Process time:
2.60 second

Process time:
2.64 second

Image5.png

502x502

Process time:
2.70 second

Process time:
2.82 second

Image4.png

800x800

https://issn.brin.go.id/terbit/detail/20220308050951950
https://issn.brin.go.id/terbit/detail/20220308100970340

JUIT Vol 5 No. 1 | January 2026 | ISSN: 2828-6936 (Print), ISSN: 2828-6901 (online), Page. 163-177

170 JUIT VOLUME 5, NO. 1, JANUARY 2026

Name Original
Image

Size Encryption
Result

Descryption
Result

Process time:
7.17 second

Process time:
7.24 second

Image5.bmp

1298x1298

Process time:
18.80 second

Process time:
18.98 second

Table 4. Results of Grayscale Image Encryption and Decryption Trials

Name Original Image Size Encryp3on
Result

Descryp3on
Result

Image6.png

199x199

Process +me:
0.40 second

Process +me:
0.43 second

Image7.png

490x490

Process +me:
2.56 second

Process +me:
1.63 second

Image8.png

502x502

Process +me:
2.72 second

Process +me:
2.82 second

Image9.png

800x800

Process +me:
5.24 second

Process +me:
5.15 second

https://issn.brin.go.id/terbit/detail/20220308050951950
https://issn.brin.go.id/terbit/detail/20220308100970340

JUIT Vol 5 No. 1 | January 2026 | ISSN: 2828-6936 (Print), ISSN: 2828-6901 (online), Page. 163-177

171 JUIT VOLUME 5, NO. 1, JANUARY 2026

Name Original Image Size Encryp3on
Result

Descryp3on
Result

Image10.bmp

1289x1289

Process +me:

18.17 second

Process +me:
18.92 second

Across the experiments, ciphertext images consistently appeared noise-like and could

not be interpreted visually, indicating that the encryption process effectively concealed the

original spatial and intensity structures. When decryption was executed using the same key

parameters, the original images were restored without observable loss, confirming

reversibility under a correct key. Conversely, when the key was slightly altered, the

decryption output turned into a random-looking image and failed to recover the original

content, demonstrating strong key sensitivity. This behavior was observed consistently for

both RGB and grayscale inputs, suggesting that the implementation is robust across

different image modes.

Processing-Time Efficiency for RGB and Grayscale Images

Processing-time evaluation was performed to examine the practical efficiency of the

implemented scheme under the same key configuration (𝑎 = 2.75, 𝑏 = 0.2, 𝑡 = 15) across

varying image sizes. The average encryption and decryption runtimes for RGB images are

reported in Table 5, and the corresponding results for grayscale images are reported in

Table 6. The results show a clear relationship between resolution and runtime: small images

(199×199 pixels) required approximately 0.39–0.43 seconds, medium images (around

490×490 to 800×800 pixels) required approximately 2.7–7.2 seconds, and large images

(around 1290×1290 pixels) required approximately 18–19 seconds.

Table 5. Average Color Image Processing Time Test Results

Name
Image

Size
(piksel)

Average Encryption
Processing Time

(seconds)

Average Decryption
Time (seconds)

Image1.jpg 199x199 0.39 second 0.42 second
Image2.png 490x490 2.60 second 2.64 second
Image3.png 502x502 2.70 second 2.82 second
Image4.png 800x800 7.17 second 7.24 second
Image5.bmp 1298x1298 18.80 second 18.98 second

https://issn.brin.go.id/terbit/detail/20220308050951950
https://issn.brin.go.id/terbit/detail/20220308100970340

JUIT Vol 5 No. 1 | January 2026 | ISSN: 2828-6936 (Print), ISSN: 2828-6901 (online), Page. 163-177

172 JUIT VOLUME 5, NO. 1, JANUARY 2026

Table 6. Average Grayscale Image Processing Time Test Results

Name Image Size
(piksel)

Average Encryption
Processing Time

(seconds)

Average Decryption
Time (seconds)

Image6.png 199x199 0.40 second 0.43 second
Image7.png 490x490 2.56 second 1.63 second
Image8.png 502x502 2.72 second 2.82 second
Image9.png 800x800 5.24 second 5.15 second

Image10.bmp 1289x1289 18.17 second 18.92 second

Overall, encryption and decryption times were relatively balanced, indicating

comparable computational complexity in both directions for the same key. Minor runtime

deviations in some grayscale cases may be influenced by implementation overhead, file

I/O, or system-level factors rather than algorithmic differences. These findings indicate that

the approach remains practical for small-to-medium images in desktop usage, while higher-

resolution inputs would benefit from computational optimization in future work.

Statistical Security Evidence Based on Histogram Analysis

To assess whether encryption obscures intensity distribution patterns that could be

exploited in statistical attacks, histogram analysis was performed by comparing the original

and encrypted images. The histogram of an original image is shown in Figure 6, while the

histogram of its encrypted counterpart is shown in Figure 7. The original histogram exhibits

a non-uniform distribution that reflects the visual characteristics of the plaintext image,

whereas the encrypted histogram becomes markedly more uniform and random-like,

indicating that the encryption process reduces statistical leakage from intensity

distributions.

Figure 6. Histogram of Original Image Image1.Png

https://issn.brin.go.id/terbit/detail/20220308050951950
https://issn.brin.go.id/terbit/detail/20220308100970340

JUIT Vol 5 No. 1 | January 2026 | ISSN: 2828-6936 (Print), ISSN: 2828-6901 (online), Page. 163-177

173 JUIT VOLUME 5, NO. 1, JANUARY 2026

Figure 7. Encrypted Image Image1.Png

This tendency supports the intended role of the permutation–diffusion structure: the

permutation disrupts spatial regularity, while diffusion alters pixel intensities so that

ciphertext no longer retains easily exploitable distributional signatures. The observed

histogram flattening aligns with expected behavior in chaos-based image encryption and

indicates improved resistance to histogram-based statistical analysis (Liu et al., 2019;

Ratna et al., 2021).

Discussion

This study examined a chaos-based permutation–diffusion image-encryption scheme

that combines Arnold’s Cat Map for pixel permutation and the Duffing Map for

keystream-driven diffusion, implemented in a Python desktop application. The results

confirm three central outcomes. First, the application reliably transforms plaintext images

into ciphertext images that are visually unrecognizable and restores the original images

when decryption uses the correct key parameters. Second, processing time increases with

image size, indicating that the approach is practical for small-to-medium resolutions but

becomes more time-consuming for high-resolution inputs. Third, histogram evidence

shows that ciphertext distributions become more uniform, suggesting reduced statistical

leakage and improved resistance to histogram-based attacks (Liu et al., 2019; Ratna et al.,

2021).

These outcomes occur due to the complementary roles of permutation and diffusion in

the proposed structure. Arnold’s Cat Map operates on pixel coordinates, disrupting spatial

regularities that naturally exist in images due to neighborhood similarity and high pixel

https://issn.brin.go.id/terbit/detail/20220308050951950
https://issn.brin.go.id/terbit/detail/20220308100970340

JUIT Vol 5 No. 1 | January 2026 | ISSN: 2828-6936 (Print), ISSN: 2828-6901 (online), Page. 163-177

174 JUIT VOLUME 5, NO. 1, JANUARY 2026

correlation. By repeatedly scrambling pixel positions through controlled iterations, ACM

reduces the visibility of the original structure even before any change to intensity values.

The Duffing Map then strengthens security through diffusion by producing a keystream

that is highly sensitive to key parameters and initial conditions, which after normalization

modifies pixel intensities via XOR so that the ciphertext no longer preserves the original

intensity distribution. This combination explains why ciphertext appears noise-like, why

minor key changes cause decryption failure, and why the encrypted histogram becomes

flatter: spatial structure is dismantled by permutation, while intensity-based statistical

signatures are masked by diffusion (Liu et al., 2019).

In comparison with prior studies, the findings align with established evidence that

permutation–diffusion schemes improve image-encryption security by simultaneously

suppressing spatial correlation and intensity statistics. For example, Liu, Wang, and Kadir

report that Duffing-map-based permutation–diffusion designs can produce near-ideal

statistical indicators (e.g., increased entropy and reduced correlation), and Zhou, Panetta,

Agaian, and Chen demonstrate that Duffing-chaos components can be integrated with other

structures to strengthen encryption against attacks (Zhou et al., 2014). Likewise, research

combining Arnold’s Cat Map with other chaotic maps for diffusion has shown that ACM

is effective for confusion but benefits from being paired with diffusion to mitigate

statistical analysis (Irawan & Rachmawanto, 2022; Rahmawati & Liantoni, 2018; Ratna et

al., 2021). The novelty of the present study lies in (i) integrating ACM (permutation) and

Duffing Map (keystream diffusion) into a single end-to-end scheme, (ii) operationalizing

the design as a Python desktop application to demonstrate practical usability (Grayson,

2020; Sweigart, 2020) and (iii) reporting functional validation, runtime behavior across

multiple image sizes, and histogram-based statistical evidence within the same

experimental workflow, thus strengthening the applied contribution beyond purely

theoretical descriptions.

From a broader interpretive standpoint, the results reinforce the view that safeguarding

visual data requires encryption mechanisms tailored to the statistical nature of images

rather than relying solely on conventional assumptions derived from text security. In social

and institutional contexts where images are increasingly used for verification,

documentation, and communication, encryption that effectively removes spatial and

statistical signatures can reduce the risk of privacy harm and unauthorized inference.

Technically, the results also contribute to a wider understanding of how chaos-based

https://issn.brin.go.id/terbit/detail/20220308050951950
https://issn.brin.go.id/terbit/detail/20220308100970340

JUIT Vol 5 No. 1 | January 2026 | ISSN: 2828-6936 (Print), ISSN: 2828-6901 (online), Page. 163-177

175 JUIT VOLUME 5, NO. 1, JANUARY 2026

dynamics through sensitivity and nonlinear behavior can be harnessed to produce strong

keystreams suitable for diffusion-driven image (Krishnamoorthi et al., 2021; Pecora &

Carroll, 2015; Strogatz, 2018).

At the same time, the study also reveals practical trade-offs. The functional benefit of

producing visually secure ciphertext and demonstrating high key sensitivity is

accompanied by increasing computational cost at larger resolutions. While the approach

remains efficient for smaller images, runtime grows substantially for large images, which

may limit real-time deployment or batch processing in high-throughput environments. In

addition, chaos-based encryption imposes operational requirements for secure key

management: parameter leakage or weak key-setting practices can undermine security even

if the algorithm is statistically strong. Thus, the method functions well as a protection

mechanism, but its effectiveness depends on how it is operationalized in realistic usage

scenarios.

Based on these findings, several action-oriented implications can be proposed. First,

for practical deployment, the system should incorporate key-management guidelines and

enforce minimum key-quality constraints (e.g., non-trivial iteration counts and parameter

precision) to avoid predictable settings (Munir, 2019; Stallings, 2017). Second,

performance optimization should be prioritized for high-resolution images, for example by

improving pixel-level operations through vectorization and more efficient memory

handling in Python-based implementations (Grayson, 2020; Sweigart, 2020). Third,

evaluation should be expanded beyond histogram evidence to include additional standard

security indicators (e.g., entropy and pixel-correlation tables across directions, as

commonly used in chaos-based encryption studies) to provide stronger evidence for

reviewers and facilitate comparison across methods (Liu et al., 2019; Ratna et al., 2021).

Collectively, these steps would improve both the scientific rigor and practical readiness of

the proposed approach for secure image handling in real-world applications.

CONCLUSION

This study demonstrates that combining Arnold’s Cat Map (permutation) and the

Duffing Map (keystream-driven diffusion) can produce a practical and secure approach for

digital image encryption and decryption within a desktop environment. The main takeaway

is that the proposed scheme successfully transforms plaintext images into visually

unrecognizable ciphertext and reliably reconstructs the original images when the correct

https://issn.brin.go.id/terbit/detail/20220308050951950
https://issn.brin.go.id/terbit/detail/20220308100970340

JUIT Vol 5 No. 1 | January 2026 | ISSN: 2828-6936 (Print), ISSN: 2828-6901 (online), Page. 163-177

176 JUIT VOLUME 5, NO. 1, JANUARY 2026

key is applied. From a performance perspective, processing time increases with image size:

for small images (199×199 pixels), encryption requires approximately 0.39–0.40 seconds

and decryption 0.42–0.43 seconds; for medium images (502×502 to 800×800 pixels), the

runtime increases to approximately 2.7–5.2 seconds; and for large images (around

1290×1290 pixels), encryption and decryption take about 18–19 seconds. Overall, the

results indicate that the ACM–Duffing integration supports strong confidentiality

properties and is designed to resist brute-force and statistical attacks.

The primary scientific contribution of this work lies in delivering an end-to-end

permutation–diffusion scheme that integrates ACM and Duffing Map into a single pipeline

and operationalizes it as a Python-based desktop application. Beyond conceptual design,

the study provides applied evidence through functional validation (encryption–decryption

correctness), runtime behavior across multiple image sizes, and histogram-based statistical

security characteristics, thereby strengthening the practical relevance of chaos-based image

cryptography for real-world use.

This study also has limitations. The statistical security evaluation presented is still

partial, as it emphasizes histogram evidence while additional quantitative indicators

commonly used in image cryptography such as entropy values and directional pixel-

correlation metrics for each test image are not fully reported in tabular form. Moreover, the

current implementation experiences a substantial runtime increase for high-resolution

images, indicating a need for optimization if real-time or large-scale processing is required.

Future research should therefore extend the evaluation with comprehensive entropy and

correlation reporting, include additional robustness tests (e.g., plaintext sensitivity

metrics), and improve computational efficiency through algorithmic and implementation-

level optimization to support broader deployment scenarios.

REFERENCES

Grayson, J. (2020). Python and Tkinter Programming. Manning Publications.
Irawan, C., & Rachmawanto, E. H. (2022). Implementasi Kriptografi dengan

Menggunakan Algoritma Arnold’s Cat Map dan Henon Map. Jurnal Masyarakat
Informatika, 13(1), 15–32. https://doi.org/10.14710/jmasif.13.1.43312

Krishnamoorthi, S. et al. (2021). Design of pseudo-random number generator from
turbulence padded chaotic map. Nonlinear Dynamics, 104(2), 1627–1643.
https://doi.org/10.1007/s11071-021-06346-x

Liu, H. et al. (2019). A novel image encryption scheme based on Duffing map and
permutation–diffusion structure. Journal of Ambient Intelligence and Humanized

https://issn.brin.go.id/terbit/detail/20220308050951950
https://issn.brin.go.id/terbit/detail/20220308100970340
https://doi.org/10.14710/jmasif.13.1.43312
https://doi.org/10.1007/s11071-021-06346-x

JUIT Vol 5 No. 1 | January 2026 | ISSN: 2828-6936 (Print), ISSN: 2828-6901 (online), Page. 163-177

177 JUIT VOLUME 5, NO. 1, JANUARY 2026

Computing, 10(12), 4811–4825.
Munir, R. (2019). Kriptografi. Informatika Bandung.
Pecora, L. M., & Carroll, T. L. (2015). Synchronization of chaotic systems. Chaos: An

Interdisciplinary Journal of Nonlinear Science, 25(9), 97611.
https://doi.org/10.1063/1.4917383

Rahmawati, W. M., & Liantoni, F. (2018). Penggunaan Arnold Cat Map Dan Beta Chaotic
Map Pada Enkripsi Data Citra. Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi
Informasi Dan Komputer, 2(2), 50–57. https://doi.org/10.31961/eltikom.v2i2.85

Ratna, A. A. P. et al. (2021). Chaos-Based Image Encryption Using Arnold’s Cat Map
Confusion and Henon Map Diffusion. Advances in Science, Technology and
Engineering Systems Journal, 6(1), 316–326. https://doi.org/10.25046/aj060136

Stallings, W. (2017). Cryptography and Network Security: Principles and Practice.
Pearson.

Strogatz, S. H. (2018). Nonlinear Dynamics and Chaos: With Applications to Physics,
Biology, Chemistry, and Engineering. CRC Press.

Sweigart, A. (2020). Automate the Boring Stuff with Python. No Starch Press.
Zhang, Y. et al. (2019). An image encryption scheme based on rotation matrix bit-level

permutation and block diffusion. The Journal of Supercomputing, 75(10), 6293–6311.
Zhou, Y. et al. (2014). Image encryption algorithm based on Duffing chaotic map and DNA

sequence. Optik, 125(18), 5455–5460.

https://issn.brin.go.id/terbit/detail/20220308050951950
https://issn.brin.go.id/terbit/detail/20220308100970340
https://doi.org/10.1063/1.4917383
https://doi.org/10.31961/eltikom.v2i2.85
https://doi.org/10.25046/aj060136

