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INTRODUCTION 

Digital images are increasingly used as information media across personal and 

institutional activities, ranging from documentation and visual communication to various 

information-system services. As a consequence, digital images have become valuable data 

assets that are vulnerable to unauthorized access, manipulation, and misuse when stored or 

transmitted without adequate protection. Within the information-security perspective, this 
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condition calls for mechanisms that can preserve confidentiality and prevent unauthorized 

parties from deriving meaning from visual content. Cryptography is commonly understood 

as an approach that transforms data into an encrypted form that is unreadable without a 

valid key (Stallings, 2017) and this principle is highly relevant to digital images as large-

scale data objects (Munir, 2019), including image protection using cryptographic 

techniques. 

Nevertheless, the characteristics of digital images mean that encryption cannot be 

treated in the same way as text encryption. Images typically involve large data volumes, 

high pixel correlation, and uneven intensity distributions, so an encryption scheme must 

suppress spatial structure and obscure statistical patterns while maintaining computational 

efficiency (Liu et al., 2019). Several image-encryption designs emphasize the need to 

randomize pixel positions and alter pixel values so that the encrypted output no longer 

reflects the visual or statistical traits of the original image (Zhang et al., 2019). In addition, 

nonlinear dynamical-system approaches have gained traction because they can produce 

seemingly random behavior and strong sensitivity to initial conditions properties that 

support key generation and strengthen encryption resistance (Pecora & Carroll, 2015; 

Strogatz, 2018). Consistently, chaos-based pseudo-random generator designs have been 

reported to produce sequences that are useful for diffusion processes in cryptography 

(Krishnamoorthi et al., 2021). 

In terms of spatial scrambling, Arnold’s Cat Map is often employed to transform pixel 

coordinates so that the positional regularity in an image becomes difficult to recognize, and 

it is commonly combined with other mechanisms to enhance overall encryption strength 

(Irawan & Rachmawanto, 2022; Rahmawati & Liantoni, 2018; Ratna et al., 2021) 

Meanwhile, strengthening the alteration of pixel intensity values can be achieved through 

diffusion using a keystream generated by a chaotic system, such as the Duffing Map, which 

has been used to support diffusion in image encryption (Zhou et al., 2014) and has 

demonstrated good performance in permutation–diffusion structures (Liu et al., 2019). To 

ensure practical usability and operability, an encryption scheme also needs to be realized 

as stable software, and Python provides an ecosystem that supports desktop application 

development along with user interfaces (Grayson, 2020; Sweigart, 2020). 

Against this background, this study aims to design and implement a permutation–

diffusion image-encryption scheme that combines Arnold’s Cat Map at the permutation 

stage and the Duffing Map as a keystream generator at the diffusion stage. The scheme is 

https://issn.brin.go.id/terbit/detail/20220308050951950
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implemented in a Python-based desktop application and evaluated using histogram, 

entropy, pixel correlation, key sensitivity, processing time, and key space as security and 

performance indicators (Liu et al., 2019; Zhang et al., 2019; Zhou et al., 2014). 

The central argument of this study is that integrating Arnold’s Cat Map and the Duffing 

Map can yield stronger image encryption: ACM-based permutation reduces spatial 

regularity and weakens pixel correlation, while Duffing-based keystream diffusion 

obscures intensity distributions and diminishes the feasibility of statistical analysis. Given 

the high parameter sensitivity of chaotic systems, the resulting key space is expected to be 

large and decryption infeasible without the correct key (Liu et al., 2019; Rahmawati & 

Liantoni, 2018; Zhou et al., 2014). Furthermore, implementing the scheme in a Python 

desktop application enables practical testing of both security and efficiency across different 

image sizes under realistic usage conditions (Grayson, 2020; Sweigart, 2020). 

 

RESEARCH METHOD 

This study adopts a digital image cryptography approach in which image data are 

treated as pixel-intensity matrices. Compared with text data, digital images typically have 

larger data volumes, strong pixel correlation, and non-uniform intensity distributions. 

Therefore, applying conventional block ciphers directly may not be computationally 

efficient or statistically optimal for image characteristics, motivating the use of 

permutation–diffusion structures that specifically target spatial correlation and intensity 

distribution leakage. 

At the permutation stage, the proposed scheme employs Arnold’s Cat Map (ACM) to 

shuffle pixel positions so that the spatial structure of the original image becomes 

unrecognizable. ACM is a two-dimensional chaotic map that is widely used for image 

encryption due to its simplicity and strong scrambling capability, while remaining 

reversible given the correct iteration setting. For an 𝑁 × 𝑁image, pixel coordinates 

(𝑥, 𝑦)are mapped to new coordinates (𝑥!, 𝑦!)using the linear modular transformation in 

Equation (1), where 𝑁denotes the image dimension and the number of iterations controls 

the scrambling strength. 

(𝑥
!

𝑦!) = +1 1
1 2. +

𝑥
𝑦.  𝑚𝑜𝑑 𝑁	
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At the diffusion stage, the scheme uses the Duffing Map as a chaotic keystream 

generator. Duffing Map originates from the Duffing oscillator and exhibits strong chaotic 

behavior and high sensitivity to initial conditions, producing sequences that approximate 

random distributions and are suitable for cryptographic diffusion (Liu et al., 2019). The 

Duffing Map is defined recursively as shown in Equation (2), where (𝑥", 𝑦")are initial 

conditions and (𝑎, 𝑏)are control parameters. In this study, the Duffing system is operated 

under parameter settings that are known to induce chaotic behavior (e.g., 𝑎 = 2.75 and 𝑏 =

0.2), as illustrated by the bifurcation behavior in Figure 1 (Krishnamoorthi et al., 2021). 

 
Figure 1. Bifurkasi Duffing Map 

 

To apply the Duffing output to image diffusion, the generated real-valued sequence is 

normalized and quantized into the integer range 0–255 to form a keystream matrix 

𝐾(𝑖, 𝑗)aligned with image pixel positions. After ACM permutation, the diffusion process 

encrypts each permuted pixel value 𝑃!(𝑖, 𝑗)by applying XOR with the corresponding 

keystream value, producing the ciphertext pixel 𝐶(𝑖, 𝑗)as shown in Equation (3). Due to the 

involutive property of XOR, the same keystream enables correct decryption, while small 

key changes result in significantly different keystreams and prevent meaningful 

reconstruction (Liu et al., 2019).  

 

RESULT AND DISCUSSION 

Functional Validation of the Python Desktop Application and Encryption–

Decryption Output 

The proposed permutation–diffusion scheme was implemented as a Python-based 

desktop application to verify end-to-end operability and correctness. The application 
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interface and workflow are presented in Figure 2 (cryptography application layout) and 

Algorithm 1 (Python implementation within the application).  

 
Figure 2. Image Cryptography Application Layout 

 

Algorithm 1 

class CryptoApp(tk.Tk): 
    def __init__(self, *args,  kwargs): 
        tk.Tk.__init__(self, *args,  kwargs) 
        self.title("Aplikasi Kriptografi v9.0 - Final") 
        self.geometry("1100x850") 
        self.title_font = ("Arial", 18, "bold") 
 
        container = tk.Frame(self) 
        container.pack(side="top", fill="both", expand=True) 
        container.grid_rowconfigure(0, weight=1) 
        container.grid_columnconfigure(0, weight=1) 
 
        self.frames = {} 
        for F in (HomePage, EncryptionPage, DecryptionPage, AnalysisPage): 
            page_name = F.__name__ 
            frame = F(container, self) 
            self.frames[page_name] = frame 
            frame.grid(row=0, column=0, sticky="nsew") 
 
        self.show_frame("HomePage") 
 

The encryption and decryption interfaces are shown in Figure 4 and Figure 5. 

Functional testing was conducted on both RGB and grayscale images to confirm that the 

system can transform readable images into visually unrecognizable ciphertext and then 

reconstruct the original images when the correct key is used. The main test configuration 

applied Duffing parameters 𝑎 = 2.75, 𝑏 = 0.2, and Arnold Cat Map iteration 𝑡 = 15. The 

datasets used in this evaluation are summarized in Table 1 (RGB images) and Table 2 

https://issn.brin.go.id/terbit/detail/20220308050951950
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(grayscale images), while the qualitative outcomes and per-image processing time are 

reported in Table 3 (RGB) and Table 4 (grayscale). 

Table 1. Color Image Test Data 

Data 
test No Original Image Image Name Image Size 

(pixel) 
Size File 

(byte) 

1 

 

Image1.jpg 199x199 82.2 KB 

2 

 

Image2.png 490x490 514.5 KB 

3 

 

Image3.png 502x502 456.98 KB 

4 

 

Image4.png 800x800 1.46 MB 

5 

 

Image5.bmp 1298x1298 4.82 MB 

 
Table2. Greyscale Image Test Data 

Data 
test No Original Image Image Name Image Size 

(pixel) 
Image Size 

(byte) 

1 

 

Image6.png 199x199 46.09 KB 

2 

 

Image7.png 490x490 514.5 KB 

https://issn.brin.go.id/terbit/detail/20220308050951950
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Data 
test No Original Image Image Name Image Size 

(pixel) 
Image Size 

(byte) 

3 

 

Image8.png 502x502 276.6 KB 

4 

 

Image9.png 800x800 974.06 KB 

5 

 

Image10.bmp 1289x1289 4.82 MB 

 

Table 3. Results of Encryption and Decryption Testing of Color Images 
Name Original 

Image 
Size Encryption 

Result 
Descryption 

Result 
Image1.jpg 

 

199x199 

 
Process time: 

0.39 second 

 
Process time: 
0.42 second 

Image2.png 

 

490x490 

 
Process time: 
2.60 second 

 
Process time: 
2.64 second 

Image5.png 

 

502x502 

 
Process time: 
2.70 second 

 
Process time: 
2.82 second 

Image4.png 

 

800x800 
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Name Original 
Image 

Size Encryption 
Result 

Descryption 
Result 

Process time: 
7.17 second 

Process time: 
7.24 second 

Image5.bmp 

 

1298x1298 

 
Process time: 
18.80 second 

 
Process time: 
18.98 second 

 
Table 4. Results of Grayscale Image Encryption and Decryption Trials 

Name Original Image Size Encryp3on 
Result 

Descryp3on 
Result 

Image6.png 

 

199x199 

 
Process +me: 
0.40 second 

 
Process +me: 
0.43 second 

Image7.png 

 

490x490 

 
Process +me: 
2.56 second 

 
Process +me: 
1.63 second 

Image8.png 

 

502x502 

 
Process +me: 
2.72 second 

 
Process +me: 
2.82 second 

Image9.png 

 

800x800 

 
Process +me: 
5.24 second 

 
Process +me: 
5.15 second 

https://issn.brin.go.id/terbit/detail/20220308050951950
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Name Original Image Size Encryp3on 
Result 

Descryp3on 
Result 

Image10.bmp 

 

1289x1289 

 
Process +me: 

18.17 second 

 
Process +me: 
18.92 second 

 

Across the experiments, ciphertext images consistently appeared noise-like and could 

not be interpreted visually, indicating that the encryption process effectively concealed the 

original spatial and intensity structures. When decryption was executed using the same key 

parameters, the original images were restored without observable loss, confirming 

reversibility under a correct key. Conversely, when the key was slightly altered, the 

decryption output turned into a random-looking image and failed to recover the original 

content, demonstrating strong key sensitivity. This behavior was observed consistently for 

both RGB and grayscale inputs, suggesting that the implementation is robust across 

different image modes. 

 

Processing-Time Efficiency for RGB and Grayscale Images 

Processing-time evaluation was performed to examine the practical efficiency of the 

implemented scheme under the same key configuration (𝑎 = 2.75, 𝑏 = 0.2, 𝑡 = 15) across 

varying image sizes. The average encryption and decryption runtimes for RGB images are 

reported in Table 5, and the corresponding results for grayscale images are reported in 

Table 6. The results show a clear relationship between resolution and runtime: small images 

(199×199 pixels) required approximately 0.39–0.43 seconds, medium images (around 

490×490 to 800×800 pixels) required approximately 2.7–7.2 seconds, and large images 

(around 1290×1290 pixels) required approximately 18–19 seconds. 

Table 5. Average Color Image Processing Time Test Results 

Name 
Image 

Size 
(piksel) 

Average Encryption 
Processing Time 

(seconds) 

Average Decryption 
Time (seconds) 

Image1.jpg 199x199 0.39 second 0.42 second 
Image2.png 490x490 2.60 second 2.64 second 
Image3.png 502x502 2.70 second 2.82 second 
Image4.png 800x800 7.17 second 7.24 second 
Image5.bmp 1298x1298 18.80 second 18.98 second 
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Table 6. Average Grayscale Image Processing Time Test Results 

Name Image Size 
(piksel) 

Average Encryption 
Processing Time 

(seconds) 

Average Decryption 
Time (seconds) 

Image6.png 199x199 0.40 second 0.43 second 
Image7.png 490x490 2.56 second 1.63 second 
Image8.png 502x502 2.72 second 2.82 second 
Image9.png 800x800 5.24 second 5.15 second 

Image10.bmp 1289x1289 18.17 second 18.92 second 
 

Overall, encryption and decryption times were relatively balanced, indicating 

comparable computational complexity in both directions for the same key. Minor runtime 

deviations in some grayscale cases may be influenced by implementation overhead, file 

I/O, or system-level factors rather than algorithmic differences. These findings indicate that 

the approach remains practical for small-to-medium images in desktop usage, while higher-

resolution inputs would benefit from computational optimization in future work. 

 

Statistical Security Evidence Based on Histogram Analysis 

To assess whether encryption obscures intensity distribution patterns that could be 

exploited in statistical attacks, histogram analysis was performed by comparing the original 

and encrypted images. The histogram of an original image is shown in Figure 6, while the 

histogram of its encrypted counterpart is shown in Figure 7. The original histogram exhibits 

a non-uniform distribution that reflects the visual characteristics of the plaintext image, 

whereas the encrypted histogram becomes markedly more uniform and random-like, 

indicating that the encryption process reduces statistical leakage from intensity 

distributions. 

 
Figure 6. Histogram of Original Image Image1.Png 

https://issn.brin.go.id/terbit/detail/20220308050951950
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Figure 7. Encrypted Image Image1.Png 

 

This tendency supports the intended role of the permutation–diffusion structure: the 

permutation disrupts spatial regularity, while diffusion alters pixel intensities so that 

ciphertext no longer retains easily exploitable distributional signatures. The observed 

histogram flattening aligns with expected behavior in chaos-based image encryption and 

indicates improved resistance to histogram-based statistical analysis (Liu et al., 2019; 

Ratna et al., 2021). 

 

Discussion 

This study examined a chaos-based permutation–diffusion image-encryption scheme 

that combines  Arnold’s Cat Map  for pixel permutation and the  Duffing Map  for 

keystream-driven diffusion, implemented in a Python desktop application. The results 

confirm three central outcomes. First, the application reliably transforms plaintext images 

into ciphertext images that are visually unrecognizable and restores the original images 

when decryption uses the correct key parameters. Second, processing time increases with 

image size, indicating that the approach is practical for small-to-medium resolutions but 

becomes more time-consuming for high-resolution inputs. Third, histogram evidence 

shows that ciphertext distributions become more uniform, suggesting reduced statistical 

leakage and improved resistance to histogram-based attacks (Liu et al., 2019; Ratna et al., 

2021).  

These outcomes occur due to the complementary roles of permutation and diffusion in 

the proposed structure. Arnold’s Cat Map operates on pixel coordinates, disrupting spatial 

regularities that naturally exist in images due to neighborhood similarity and high pixel 

https://issn.brin.go.id/terbit/detail/20220308050951950
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correlation. By repeatedly scrambling pixel positions through controlled iterations, ACM 

reduces the visibility of the original structure even before any change to intensity values. 

The Duffing Map then strengthens security through diffusion by producing a keystream 

that is highly sensitive to key parameters and initial conditions, which after normalization 

modifies pixel intensities via XOR so that the ciphertext no longer preserves the original 

intensity distribution. This combination explains why ciphertext appears noise-like, why 

minor key changes cause decryption failure, and why the encrypted histogram becomes 

flatter: spatial structure is dismantled by permutation, while intensity-based statistical 

signatures are masked by diffusion (Liu et al., 2019). 

In comparison with prior studies, the findings align with established evidence that 

permutation–diffusion schemes improve image-encryption security by simultaneously 

suppressing spatial correlation and intensity statistics. For example, Liu, Wang, and Kadir 

report that Duffing-map-based permutation–diffusion designs can produce near-ideal 

statistical indicators (e.g., increased entropy and reduced correlation), and Zhou, Panetta, 

Agaian, and Chen demonstrate that Duffing-chaos components can be integrated with other 

structures to strengthen encryption against attacks (Zhou et al., 2014). Likewise, research 

combining Arnold’s Cat Map with other chaotic maps for diffusion has shown that ACM 

is effective for confusion but benefits from being paired with diffusion to mitigate 

statistical analysis (Irawan & Rachmawanto, 2022; Rahmawati & Liantoni, 2018; Ratna et 

al., 2021). The novelty of the present study lies in (i) integrating  ACM (permutation)  and  

Duffing Map (keystream diffusion)  into a single end-to-end scheme, (ii) operationalizing 

the design as a  Python desktop application  to demonstrate practical usability (Grayson, 

2020; Sweigart, 2020) and (iii) reporting functional validation, runtime behavior across 

multiple image sizes, and histogram-based statistical evidence within the same 

experimental workflow, thus strengthening the applied contribution beyond purely 

theoretical descriptions. 

From a broader interpretive standpoint, the results reinforce the view that safeguarding 

visual data requires encryption mechanisms tailored to the statistical nature of images 

rather than relying solely on conventional assumptions derived from text security. In social 

and institutional contexts where images are increasingly used for verification, 

documentation, and communication, encryption that effectively removes spatial and 

statistical signatures can reduce the risk of privacy harm and unauthorized inference. 

Technically, the results also contribute to a wider understanding of how chaos-based 

https://issn.brin.go.id/terbit/detail/20220308050951950
https://issn.brin.go.id/terbit/detail/20220308100970340


 
 
 
 
JUIT Vol 5 No. 1 | January 2026 | ISSN: 2828-6936 (Print), ISSN: 2828-6901 (online), Page. 163-177 

175   JUIT VOLUME 5, NO. 1, JANUARY 2026 
 

dynamics through sensitivity and nonlinear behavior can be harnessed to produce strong 

keystreams suitable for diffusion-driven image (Krishnamoorthi et al., 2021; Pecora & 

Carroll, 2015; Strogatz, 2018). 

At the same time, the study also reveals practical trade-offs. The functional benefit of 

producing visually secure ciphertext and demonstrating high key sensitivity is 

accompanied by increasing computational cost at larger resolutions. While the approach 

remains efficient for smaller images, runtime grows substantially for large images, which 

may limit real-time deployment or batch processing in high-throughput environments. In 

addition, chaos-based encryption imposes operational requirements for secure key 

management: parameter leakage or weak key-setting practices can undermine security even 

if the algorithm is statistically strong. Thus, the method functions well as a protection 

mechanism, but its effectiveness depends on how it is operationalized in realistic usage 

scenarios. 

Based on these findings, several action-oriented implications can be proposed. First, 

for practical deployment, the system should incorporate  key-management guidelines  and 

enforce minimum key-quality constraints (e.g., non-trivial iteration counts and parameter 

precision) to avoid predictable settings (Munir, 2019; Stallings, 2017). Second, 

performance optimization should be prioritized for high-resolution images, for example by 

improving pixel-level operations through vectorization and more efficient memory 

handling in Python-based implementations (Grayson, 2020; Sweigart, 2020). Third, 

evaluation should be expanded beyond histogram evidence to include additional standard 

security indicators (e.g., entropy and pixel-correlation tables across directions, as 

commonly used in chaos-based encryption studies) to provide stronger evidence for 

reviewers and facilitate comparison across methods (Liu et al., 2019; Ratna et al., 2021). 

Collectively, these steps would improve both the scientific rigor and practical readiness of 

the proposed approach for secure image handling in real-world applications. 

 

CONCLUSION 

This study demonstrates that combining Arnold’s Cat Map (permutation) and the 

Duffing Map (keystream-driven diffusion) can produce a practical and secure approach for 

digital image encryption and decryption within a desktop environment. The main takeaway 

is that the proposed scheme successfully transforms plaintext images into visually 

unrecognizable ciphertext and reliably reconstructs the original images when the correct 
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key is applied. From a performance perspective, processing time increases with image size: 

for small images (199×199 pixels), encryption requires approximately 0.39–0.40 seconds 

and decryption 0.42–0.43 seconds; for medium images (502×502 to 800×800 pixels), the 

runtime increases to approximately 2.7–5.2 seconds; and for large images (around 

1290×1290 pixels), encryption and decryption take about 18–19 seconds. Overall, the 

results indicate that the ACM–Duffing integration supports strong confidentiality 

properties and is designed to resist brute-force and statistical attacks. 

The primary scientific contribution of this work lies in delivering an end-to-end 

permutation–diffusion scheme that integrates ACM and Duffing Map into a single pipeline 

and operationalizes it as a Python-based desktop application. Beyond conceptual design, 

the study provides applied evidence through functional validation (encryption–decryption 

correctness), runtime behavior across multiple image sizes, and histogram-based statistical 

security characteristics, thereby strengthening the practical relevance of chaos-based image 

cryptography for real-world use. 

This study also has limitations. The statistical security evaluation presented is still 

partial, as it emphasizes histogram evidence while additional quantitative indicators 

commonly used in image cryptography such as entropy values and directional pixel-

correlation metrics for each test image are not fully reported in tabular form. Moreover, the 

current implementation experiences a substantial runtime increase for high-resolution 

images, indicating a need for optimization if real-time or large-scale processing is required. 

Future research should therefore extend the evaluation with comprehensive entropy and 

correlation reporting, include additional robustness tests (e.g., plaintext sensitivity 

metrics), and improve computational efficiency through algorithmic and implementation-

level optimization to support broader deployment scenarios. 
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