PENERAPAN METODE BERT UNTUK ANALISIS SENTIMEN ULASAN PENGGUNA APLIKASI SEGARI DI GOOGLE PLAY STORE
DOI:
https://doi.org/10.56127/juit.v4i1.1902Keywords:
Quick commerce, Segari, sentiment analysis, user reviews, Google Play Store, BERT, machine learning, model accuracy.Abstract
Quick commerce services provide shopping convenience with flexible ordering processes unrestricted by time and location, along with rapid delivery, typically within 10–30 minutes. This study analyzes user sentiment towards the quick commerce application Segari, based on reviews available on the Google Play Store. The objective is to develop a system capable of analyzing and categorizing reviews based on user opinions, sentiments, and emotions using the Bidirectional Encoder Representations from Transformers (BERT) method. The dataset of reviews was collected using web scraping techniques and underwent pre-processing steps, including case folding, data cleaning, tokenization, and normalization. The model was trained with a learning rate of 3e-5, 5 epochs, and a batch size of 32. The study achieved an accurate score of 89%, with precision scores of 91% for positive sentiment, 83% for negative sentiment, and 69% for neutral sentiment. This research provides significant insights into user sentiment towards the Segari application and serves as a reference for further development in quick commerce services.
References
M. Schorung, “Quick commerce: will the disruption of the food retail industry happen? Investigating the quick commerce supply chain and the impacts of dark stores,” 2023.
Simanungkalit, J. P. P. Naibaho, and A. De Kweldju, “Analisis Sentimen Berbasis Aspek Pada Ulasan Aplikasi Shopee Menggunakan Algoritma Naïve Bayes,” Jutisi J. Ilm. Tek. Inform. dan Sist. Inf., vol. 13, no. 1, p. 659, 2024.
D. A. Pradana and A. P. Wibowo, “Analisis Sentimen Ulasan Produk Sepatu Compass Di E- Commerce Tokopedia Menggunakan Algoritma Naive Bayes Classifier ( NBC ) Analisis Sentimen Ulasan Produk Sepatu Compass Di E- Commerce Tokopedia Menggunakan Algoritma Naive Bayes Classifier ( NBC ),” Inov. Pembang. – J. KELITBANGAN, vol. 12, no. 3, pp. 1–12, 2024.
K. Dewi, “Analisis Sentimen Ekspedisi Sicepat Dari Ulasan Google Play Mennggunakan Algoritma Naïve Bayes,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 796–805, 2022.
D. N. I. Huda and C. Prianto, “Analisis Sentimen Layanan Jasa Pengiriman Pada Ulasan Play Store: Systematic Literature Review,” J. Inform. dan Teknol. Komput., vol. 4, no. 2, pp. 87–98, 2023.
K. F. E. D. W. R. Permatasari, “Analisis Sentimen Berbasis Aspek Pada Ulasan Aplikasi Indrive Menggunakan Bidirectional Encoder Representations From Transformers (Bert),” J. Ilm. Wahana Pendidik., vol. 10, no. 20, pp. 105–115, 2024.
N. B. Sidauruk and N. Riza, “Sentimen Analisis Data Pengguna Terhadap KAI Access Systematic Literature Review,” J. Mhs. Tek. Inform., vol. 7, no. 2, pp. 1297–1303, 2023.
D. Jovanoski, V. Pachovski, and P. Nakov, “Sentiment analysis in twitter for Macedonian,” Int. Conf. Recent Adv. Nat. Lang. Process. RANLP, vol. 2015-January, pp. 249–257, 2015.
R. M. R. W. P. K. Atmaja and W. Yustanti, “Analisis Sentimen Customer Review Aplikasi Ruang Guru dengan Metode BERT (Bidirectional Encoder Representations from Transformers),” Jeisbi, vol. 02, no. 03, pp. 55–62, 2021.
M. Senjaya, A., & Achmad Benny, “Analisis Sentimen Aplikasi Vidio Berdasarkan Review Pada Google Play Store Menggunakan Metode Bidirectional Encoder Representations from Transformers (BERT),” 2022.
R. Kusnadi, Y. Yusuf, A. Andriantony, R. Ardian Yaputra, and M. Caintan, “Analisis Sentimen Terhadap Game Genshin Impact Menggunakan Bert,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 6, no. 2, pp. 122–129, 2021.
C. A. Putri, “Analisis Sentimen Review Film Berbahasa Inggris Dengan Pendekatan Bidirectional Encoder Representations from Transformers,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 6, no. 2, pp. 181–193, 2020.
L. Qadrini, H. Hikmah, and M. Megasari, “Oversampling, Undersampling, Smote SVM dan Random Forest pada Klasifikasi Penerima Bidikmisi Sejawa Timur Tahun 2017,” J. Comput. Syst. Informatics, vol. 3, no. 4, pp. 386–391, 2022.
V. V. Verianto, “Factors Influencing Segari E-Grocery’s Purchase Intention Moderated by Gender and Age,” J. Bus. Manag. Rev., vol. 4, no. 2, pp. 149–167, 2023.
B. Liu, “Sentiment Analysis: Mining Opinions, Sentiments, and Emotions,” in Sentiment Analysis: Mining Opinions, Sentiments, and Emotions, vol. 11, no. 3, 2015, pp. 277–278.
M. F. Ramadhan, B. Siswoyo, and S. I. Cirebon, “Mengenal Model BERT dan Implementasinya untuk Analisis Sentimen Ulasan Game,” in Prosiding Seminar Nasional Sistem Informasi dan Teknologi (SISFOTEK) ke, 2024, pp. 395–398.
B. G. A. Ghodsi, Neural Network Compression and Knowledge Distillation : Tutorial and Survey. 2024.
T. A. S. Rohmah and W. Maharani, “Personality Detection on Twitter Social Media Using IndoBERT Method,” Build. Informatics, Technol. Sci., vol. 4, no. 2, pp. 448–453, 2022.
D. R. Wijaya and G. M. A. S. W. O. Vihikan, “Sentiment Analysis of Indonesian Citizens on Electric Vehicle Using FastText and BERT Method,” J. Inf. Syst. Informatics, vol. 6, no. 3, pp. 1360–1372, 2024.