

Development of a Calorie Calculator Application Utilizing Height and Weight-Based Conversion

Junior Maulidiansyah^{1*}, Mohammad Rofi'i², Wisnu Adi Prasetyanto³

Sekolah Tinggi Ilmu Kesehatan, Semarang, Indonesia

Article History

Received : 10 July 2025

Revised : 15 July 2025

Accepted : 16 July 2025

Available Online

17 July 2025

Corresponding author*:

junihen11@gmail.com

Cite This Article:

Junior Maulidiansyah,
Mohammad Rofi'i, &
Wisnu Adi Prasetyanto.
(2025). Development of a
Calorie Calculator
Application Utilizing
Height and Weight-Based
Conversion. *Jurnal
Kesehatan Dan
Kedokteran*, 4(2), 48–57.

DOI:

<https://doi.org/10.56127/jukke.v4i2.2156>

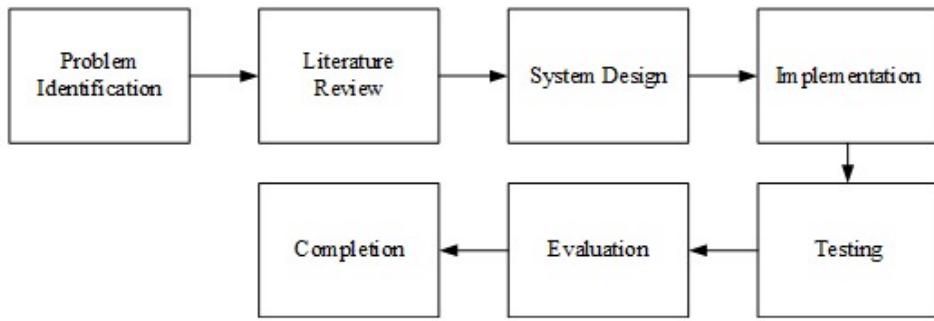
Abstract: The advancement of information technology has significantly contributed to innovations in the health sector, including the development of digital tools that support nutrition management and healthy lifestyle practices. One essential aspect of maintaining health is managing daily caloric intake based on individual metabolic needs, which are influenced by factors such as age, gender, height, weight, and physical activity. However, many individuals are unaware of how to accurately calculate their caloric requirements. Therefore, a practical and accurate system is needed to provide personalized calorie recommendations. This study presents the design and development of an Android-based calorie calculator application that estimates daily energy needs using user inputs: age, gender, height, weight, and activity level. The application integrates two well-known formulas—Harris-Benedict and Mifflin-St Jeor—to calculate Basal Metabolic Rate (BMR) and determines Total Daily Energy Expenditure (TDEE) by categorizing physical activity as light, moderate, or intense. In addition, the app includes a Body Mass Index (BMI) calculator to indicate the user's nutritional status. Developed using the Kotlin programming language in Android Studio, the application is designed with a user-friendly interface to enhance user experience. Functionality testing demonstrated that the application provides accurate estimations of caloric needs and reliable BMI categorization based on user input. The outputs are consistent with results from existing online calorie calculators, confirming its precision and usability. This calorie calculator application is expected to function both as an educational and practical tool for individuals seeking to adopt a balanced diet and effective weight management strategy.

Keywords: Calorie Calculator, BMR, BMI, TDEE, Android, Health App, Nutrition, Weight Management.

INTRODUCTION

Physical health and fitness are essential components of daily life. One of the key determinants of an individual's well-being is the balance between caloric intake and energy expenditure. Calories (kcal) represent the units of energy derived from food, which the body utilizes to perform vital functions. However, an imbalance in calorie consumption can lead to health problems such as obesity, malnutrition, or metabolic disorders.

With the growing public awareness of the importance of a healthy diet, there is increasing demand for tools that help individuals monitor and manage their calorie intake. One effective approach to estimate daily caloric needs is through a conversion method based on body height and weight. This method allows users to calculate their caloric requirements based on physical parameters and can be used as a guide for maintaining a healthier lifestyle and eating habits.


To support healthy living and provide a practical solution for calculating caloric needs, a digital application is needed that can automatically and accurately compute daily calorie requirements. The application will be developed to help users determine the number of calories they need based on their height and weight. With this tool, it is expected that users will be able to more easily manage their diet, maintain energy balance, and reduce health risks associated with improper caloric intake.

1. Based on the identified problem, a viable solution is to develop a "Calorie Calculator Application Based on Height and Weight Conversion." This application aims to provide a quick, accurate, and practical means for users to calculate their daily caloric needs. The application focuses solely on height and weight as input parameters, excluding age, gender, or activity level as core factors.
2. The application will be implemented as a software-based platform operating on specific systems, such as Android or web-based platforms. This study does not cover development for other operating systems such as iOS or specialized hardware devices.

RESEARCH METHOD

Research Design

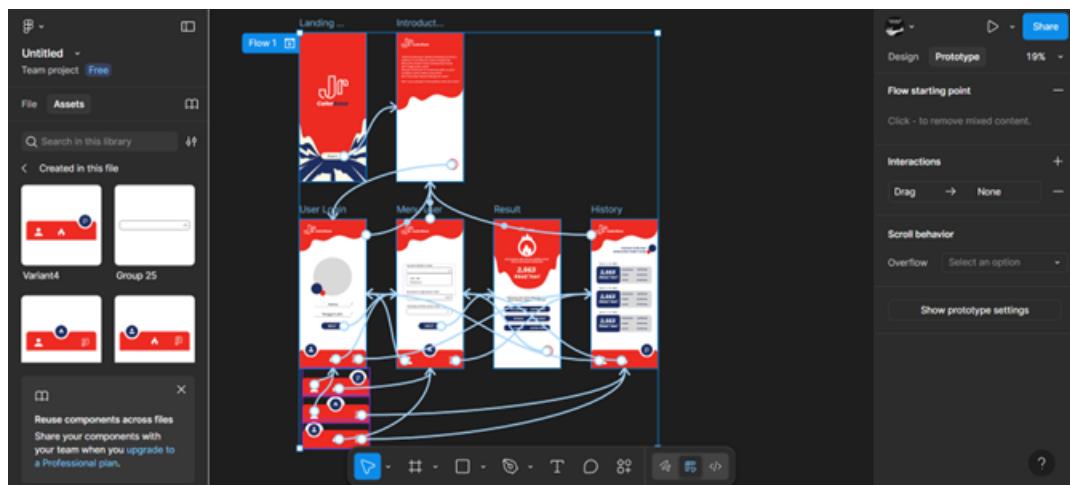

This study applies the Research and Development (R&D) method to create a functional software product that addresses real-world problems in health and nutrition. The product developed is a mobile-based calorie calculator application for Android, designed to estimate users' daily caloric needs based on height, weight, age, gender, and physical activity level. The R&D approach is chosen because it involves a systematic process including analysis, design, implementation, testing, and evaluation.

Figure 1. Research and Development Flowchart

The R&D stages are as follows:

1. Needs Analysis: Collecting user requirements and nutritional formulas, including BMR (Basal Metabolic Rate), BMI (Body Mass Index), and TDEE (Total Daily Energy Expenditure), to define application features.
2. System Design: Designing UI/UX using Figma, along with system diagrams such as flowcharts and UML.

Figure 2. User Interface Design Overview

3. Implementation: Developing the application in Android Studio using Kotlin, aligned with previously defined functional and visual requirements.

```

27  public class ResultActivity extends AppCompatActivity {
105  private double hitungKaliHariAn() {
114      double bmr;
115
116      // Rumus BMR berdasarkan jenis kelamin
117      if (jenisKelamin.equalsIgnoreCase("Laki-laki")) {
118          bmr = 88.362 + (13.397 * berat) + (4.799 * tinggi) - (5.677 * usia);
119      } else {
120          bmr = 447.593 + (9.247 * berat) + (3.098 * tinggi) - (4.330 * usia);
121      }
122
123      // Faktor aktivitas
124      double faktorAktivitas = 1.2; // default sedentary
125      switch (aktivitas) {
126          case "Ringan Aktif (olahraga ringan 1-3 hari/minggu)":
127              faktorAktivitas = 1.375;
128              break;
129          case "Cukup Aktif (olahraga sedang 3-5 hari/minggu)":
130              faktorAktivitas = 1.55;
131              break;
132          case "Sangat Aktif (olahraga berat 6-7 hari/minggu)":
133              faktorAktivitas = 1.725;
134              break;
135          case "Ekstra Aktif (atlet atau pekerjaan fisik berat)":
136              faktorAktivitas = 1.9;
137              break;
138      }
139
140      return bmr * faktorAktivitas;
141  }

```

Figure 3. Nutrition Calculation Output Screen

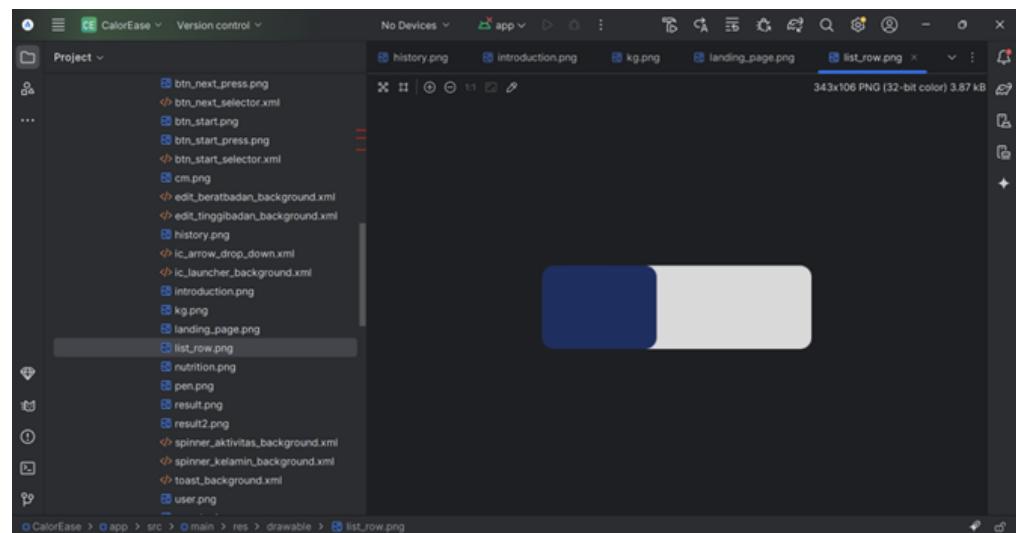
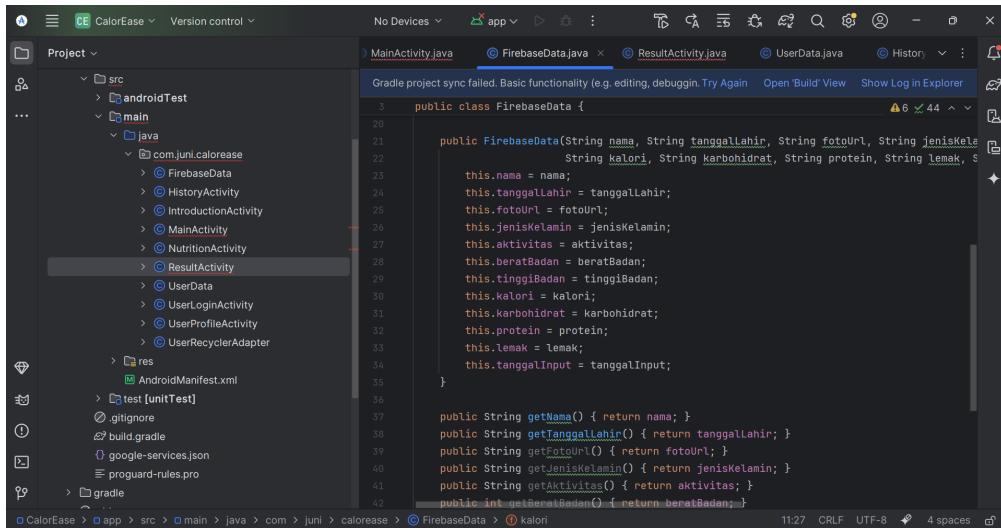



Figure 4. Elements that have been exported from Figma

4. Testing: Conducting black-box testing to verify system functionality and accuracy of calorie computations.


```

public class FirebaseData {
    String nama, tanggallahir, fotoUrl, jenisKeluarga, kalori, karbohidrat, protein, lemak, tinggiBadan;
    int beratBadan, aktivitas;
    public FirebaseData(String nama, String tanggallahir, String fotoUrl, String jenisKeluarga, String kalori, String karbohidrat, String protein, String lemak, int tinggiBadan, int beratBadan, int aktivitas) {
        this.nama = nama;
        this.tanggallahir = tanggallahir;
        this.fotoUrl = fotoUrl;
        this.jenisKeluarga = jenisKeluarga;
        this.kalori = kalori;
        this.karbohidrat = karbohidrat;
        this.protein = protein;
        this.lemak = lemak;
        this.tinggiBadan = tinggiBadan;
        this.beratBadan = beratBadan;
        this.aktivitas = aktivitas;
    }
    public String getNama() { return nama; }
    public String getTanggallahir() { return tanggallahir; }
    public String getFotoUrl() { return fotoUrl; }
    public String getJenisKeluarga() { return jenisKeluarga; }
    public String getKalori() { return kalori; }
    public int getBeratBadan() { return beratBadan; }
    public int getAktivitas() { return aktivitas; }
}

```

Figure 5. Firebase Data Structure

5. Evaluation: Performing system improvements based on test results before release.

Type of Research

The research is classified as applied design and development research. It emphasizes the development of a practical digital tool to assist users in estimating daily energy needs. Calculations use the Mifflin-St Jeor equation for BMR, which is multiplied by a Physical Activity Level (PAL) factor to determine Total Energy Expenditure (TEE).

The TEE result is then broken down into macronutrient distribution:

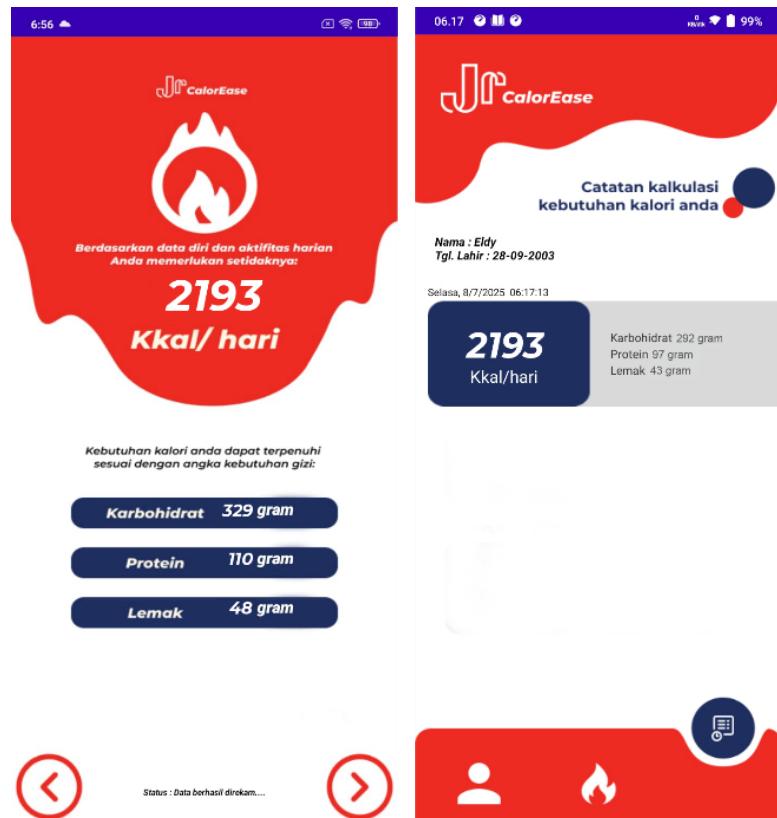
1. 60% carbohydrates
2. 20% protein
3. 20% fat

Nutritional data is sourced from the Tabel Komposisi Pangan Indonesia (TKPI) by the Ministry of Health and the FAO/INFOODS Food Composition Database, ensuring reliable nutritional values for macronutrient recommendations.

Time and Place of Research

The research was conducted over a three-month period at Koontrakan Desel, serving as the environment for both application development and implementation testing.

Table 1. Tools and Materials Used

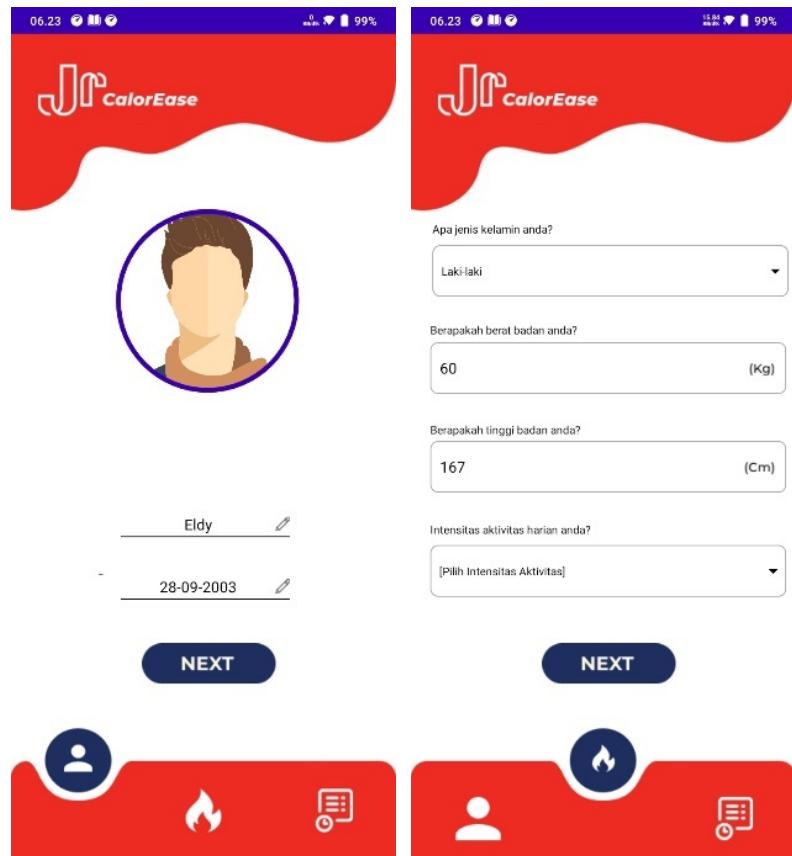

Tools	Description
Laptop / PC	Used to code and develop the application in Android Studio.
Android Smartphone	Used for real-device testing of the application.
Internet Access	Needed for referencing, downloading libraries, and accessing documentation.
Materials	Description
Android Studio	IDE for Android development.
Figma	UI/UX design tool.
Kotlin & Java	Programming languages used.
Firebase / SQLite	Database systems for user data storage.
Scientific References	Journals and books on calorie needs, BMR, and nutrition software design.

RESULT AND DISCUSSION

Application Implementation Results

The development of the Android-based calorie calculator application was successfully completed using Android Studio with Kotlin as the primary programming language. The application enables users to calculate their daily caloric needs based on inputs such as weight, height, age, gender, and physical activity level. The calculation follows the Mifflin-St Jeor equation for Basal Metabolic Rate (BMR) and multiplies it by a Physical Activity Level (PAL) factor to determine Total Daily Energy Expenditure (TDEE).

Additionally, the app offers a nutritional recommendation feature that converts the macronutrient requirements into common food items (e.g., rice, chicken, tofu) using data from the Tabel Komposisi Pangan Indonesia (TKPI) and FAO/INFOODS database.


Figure 6. Sample Output of TDEE Calculation and Macronutrient Breakdown

Functional Testing and Accuracy

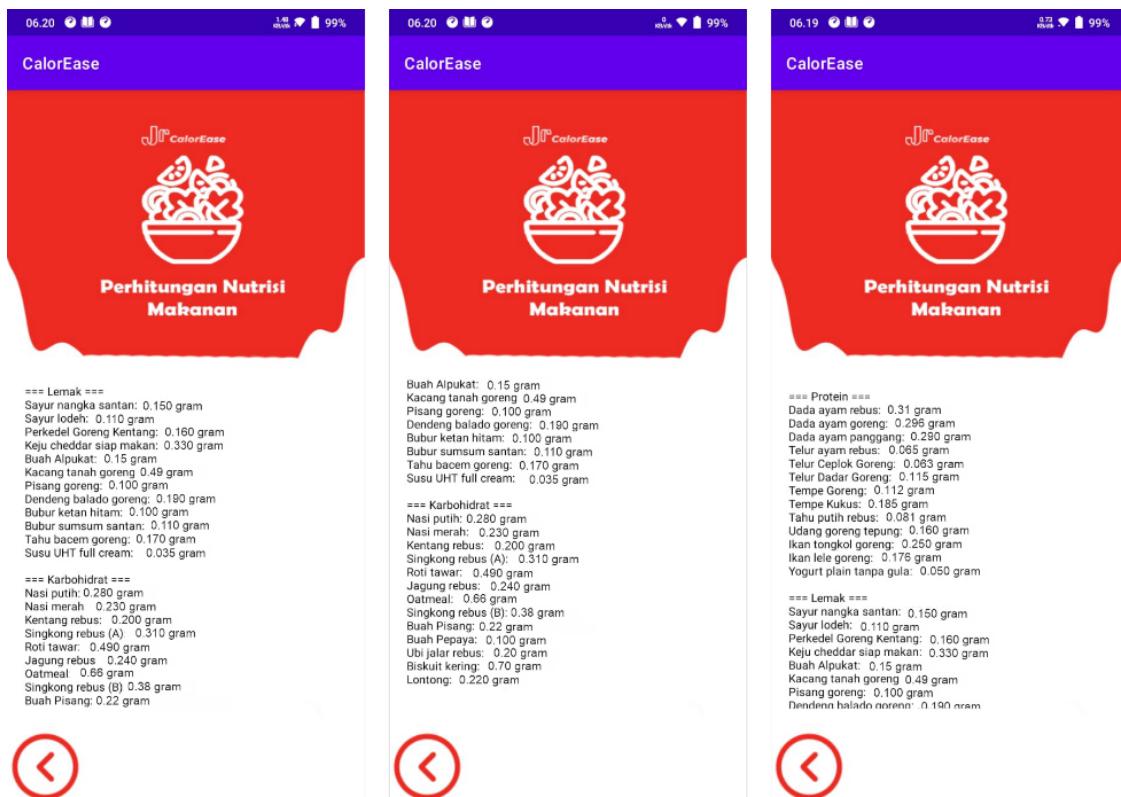
The functional testing involved four users with varied profiles. Each user input personal data into the system, and the app generated:

1. Daily caloric needs (in kcal)
2. Macronutrient distribution (in grams)
3. Suggested food equivalents per nutrient

User	Gender	Age	Height (cm)	Weight (kg)	Activity Level	TEE (kcal)
Eldy	Male	21	167	60	Light	2193.64
Vatkhan	Male	22	164	54	Very Light	1946.63
Alya	Female	23	160	50	Light	1814.20
Amalia	Female	21	158	48	Heavy	2067.47

Figure 7. User Input and Calorie Estimation Results

The calculations performed by the application were compared to results from established online calorie calculators and showed consistently accurate values, validating the reliability of the implemented algorithm.


Discussion

The application fulfills its intended function as a practical and educational tool for estimating calorie needs. The inclusion of macronutrient breakdown and food conversion suggestions increases its value for users seeking to manage their dietary intake.

A few notable observations:

1. The TDEE values significantly vary by activity level, even with similar weight/height. For example, Amalia's TDEE is higher than Alya's due to her "heavy" activity classification despite having a lower body mass.
2. The app's interface is intuitive and allows easy navigation between input, results, and food recommendation screens.

3. Firebase Realtime Database is used to save and retrieve user history, which supports long-term tracking and personalization.

Figure 8. Recommended Food Quantities for Macronutrients (Based on TDEE)

This system has strong potential to support not only general users but also nutritionists in performing quick estimations and creating personalized dietary recommendations.

CONCLUSION

This study successfully designed and developed a mobile-based calorie calculator application for the Android platform, which estimates daily caloric needs using key physical parameters such as height, weight, age, gender, and physical activity level. The system implements the Mifflin-St Jeor equation to calculate Basal Metabolic Rate (BMR) and determines Total Daily Energy Expenditure (TDEE) by incorporating the user's Physical Activity Level (PAL).

The results showed that the application provides accurate and consistent calorie estimations and macronutrient distribution when compared to established online calculators. Moreover, the application translates the nutritional needs into practical food

recommendations based on Indonesian dietary data, making it both educational and actionable for users.

Through a clean and intuitive user interface, supported by real-time data storage using Firebase, the app enables users to monitor and manage their daily energy intake efficiently. This tool is not only suitable for general users, but it may also assist nutritionists and health professionals in preliminary assessments or dietary planning.

In summary, the application serves as a reliable, science-based, and user-friendly solution for supporting healthy eating habits and personal weight management. Further development is encouraged to integrate advanced features such as dietary history tracking, user authentication, and real-time activity monitoring for dynamic calorie adjustment.

REFERENCES

Badan Penelitian dan Pengembangan Kesehatan. (2005). Tabel komposisi pangan Indonesia (TKPI). Departemen Kesehatan Republik Indonesia.

Food and Agriculture Organization of the United Nations. (2019). FAO/INFOODS databases. <https://www.fao.org/infooods/infooods/tables-and-databases>

Mifflin, M. D., St Jeor, S. T., Hill, L. A., Scott, B. J., Daugherty, S. A., & Koh, Y. O. (1990). A new predictive equation for resting energy expenditure in healthy individuals. *The American Journal of Clinical Nutrition*, 51(2), 241–247. <https://doi.org/10.1093/ajcn/51.2.241>

World Health Organization. (2001). Human energy requirements: Report of a Joint FAO/WHO/UNU Expert Consultation (WHO Technical Report Series). <https://www.who.int/publications/i/item/9241209351>

Android Developers. (n.d.). Android Studio user guide. <https://developer.android.com/studio>

Firebase. (n.d.). Firebase Realtime Database documentation. <https://firebase.google.com/docs/database>

Oleksiv, N., Oborska, O., Mykitch, K., Mushasta, S., Pukach, Y., & Tereshchuk, O. (2021). Information System of Dynamic and Adaptive Control of Human Diet Based on Machine Learning Technology. In MoMLET+ DS (pp. 373-406).

Figma Inc. (n.d.). Figma – The collaborative interface design tool. <https://www.figma.com/>

Holten, K. (2022). Pipeline for Calculating Calories for Print Recipes with Minimal User Intervention. The University of Wisconsin-Milwaukee.

Milliard, S. (2019). Designing calorie counter smartphone applications for effective weight loss.