Descriptive Data Visualization Dashboard of LQ45 Stock Price Movements using Pygwalker

Authors

  • Evans Winanda Wirga Gunadarma University
  • Julia Fajaryanti Gunadarma University
  • Akmal Ridho Rabbani Gunadarma University
  • Wisnu Sukma Maulana Gunadarma University

DOI:

https://doi.org/10.56127/ijml.v4i2.2205

Keywords:

Data Visualization, PygWalker, LQ45 Stocks, LQ45 Stock Price Movements

Abstract

This research aims to design and develop a descriptive data visualization dashboard for analyzing stock price movements on the LQ45 index. The interactive dashboard is designed to present a summary of descriptive statistics, historical trends, and stock price volatility of LQ45 constituents. The research method applied refers to the CRISP-DM approach and the Dashboard Design Pattern principle, which includes stock price data collection, descriptive statistical analysis, and effective data visualization design. The results of this research are expected to be a useful tool in providing an overview of historical stock price patterns with an interactive approach.

References

Bach, B., Freeman, E., Abdul-Rahman, A., Turkay, C., Khan, S., Fan, Y., and Chen, M. (2022). Dashboard design patterns. Transactions on Visualization and Computer Graphics (2023).

Cutting, V. and Stephen, N. (2021). A review on using python as a preferred programming language for beginners. International Research Journal of Engineering and Technology (IRJET), 8:4258–4263.

Fadilah, A. N. (2025). Visualisasi data cerdas: Memanfaatkan kecerdasan buatan untuk wawasan yang lebih dalam. Visualisasi Data Cerdas: Memanfaatkan Kecerdasan Buatan untuk Wawasan yang Lebih Dalam.

Munandar, A., Sudiarto, S., and Suhartana, L. W. P. (2021). Kedudukan saham atas nama dalam perkawinan. Jurnal Risalah Kenotariatan, 2(2).

Negara, A. K. and Febrianto, H. G. (2020). Pengaruh kemajuan teknologi informasi dan pengetahuan investasi terhadap minat investasi generasi milenial di pasar modal. Business Management Journal, 16(2):81.

Nugroho, M. N. (2018). Financial ratio analysis that distinguishes company shares indexed in lq45 and the non-lq45 on the indonesia stock exchange (bursa efek indonesia). Archives of Business Research, 6(11).

Schrooer, C., Kruse, F., and Gomez, J. M. (2021). A systematic literature review on applying crisp-dm process model. Procedia Computer Science, 181:526–534.

Setiawan, S. (2017). Analisis portofolio optimal saham-saham lq45 menggunakan single index model di bursa efek indonesia periode 2013-2016. Journal of Accounting and Business Studies, 1(2).

Srinath, K. R. (2017). Python - the fastest growing programming language.

Sulianta, F. (2024). Visualisasi Data untuk Pemula. Feri Sulianta.

Wexler, S., Shaffer, J., and Cotgreave, A. (2017). The Big Book of Dashboards: Visualizing Your Data Using Real-World Business Scenarios. BusinessProcollection.Wiley.

Widyawati, K. and Wibowo, B. (2021). The effect of inclusion and exclusion indexes towards lq45 and msci index on the pattern of stock return and stock trading volume. In Proceedings of the 1st International Conference on Sustainable Management and Innovation, ICoSMI 2020, 14-16 September 2020, Bogor, West Java, Indonesia, ICoSMI. EAI.

Yu, Y., Shen, L., Long, F., Qu, H., and Chen, H. (2024). Pygwalker: On-the-fly assistant for exploratory visual data analysis. In 2024 IEEE Visualization and Visual Analytics (VIS), pages 6–10. IEEE.

Downloads

Published

2025-06-15