Performance Comparison of Support Vector Machine and Deep Neural Network for Sentiment Classification in Digital Tourism

Authors

  • Anisa Lora Universitas Nusa Megarkencana
  • Tubagus Maulana Kusuma Gunadarma University

DOI:

https://doi.org/10.56127/ijml.v4i2.2233

Keywords:

DNN, Machine Learning, Sentiment Analysis, SVM

Abstract

This study aims to classify public sentiment on SNS Instagram @indtravel content using Machine Learning techniques with Support Vector Machine (SVM) and Deep Neural Network (DNN) Modeling. From the results of this analysis, it can be seen whether the tourism promotion strategy by the Indonesian Ministry of Tourism through SNS Instagram tends to be positive or negative towards the push and pull factors for someone to take a tour. In addition, this study also aims to compare the performance ​​of Accuracy, Precision, Recall, F1-Measure, ErrorRate, and the AUC-ROC Curve of the SVM and DNN models. The dataset used in this study was obtained from SNS Instagram @indtravel comments using scraping techniques. The results of the evaluation in this study indicate that the public sentiment towards the content of SNS Instagram @indtravel tends to be positive towards the push and pull factors for someone to take a tour. Based on the results of the performance comparison between the SVM and DNN model, it is proven DNN model has a higher level of performance in Accuracy (89,37%), Precision (93,79%), F1-Measure (93,79%), ErrorRate (10,63%), were the SVM model only higher in Precision rate with a difference of 5,43%. This indicates that the DNN model has a very good performance in classifying public sentiment on SNS media compared to the SVM model

References

Arham, A. Z. (2018). Klasifikasi Ulasan Buku Menggunakan Algoritma Convolutional Neural Network – Long Short Term Memory. repository.its.ac.id/51134/1/06111340000118-Undergraduate_Theses.pdf

Ariadi, D., & Fithriasari, K. (2015). Klasifikasi Berita Indonesia Menggunakan Metode Naive Bayesian Classification dan Support Vector Machine dengan Confix Stripping Stemmer. JURNAL SAINS DAN SENI ITS Vol. 4, No.2. DOI: 10.12962 / j23373520.v4i2.10966

Assuja, M. A., & Saniati, S. (2016). Analisis Sentimen Tweet Menggunakan Backpropagation Neural Network. Jurnal Teknoinfo. https://doi.org/10.33365/jti.v10i2.20

Chy, A. N., Siddiqua, U. A., & Aono, M. (2018). Neural Networks and Support Vector Machine based Approach for Classifying Tweets by Information Types at TREC 2018 Incident Streams Task. Trec. https://trec.nist.gov/pubs/trec27/papers/KDEIS-IS.pdf

Dos Santos, C. N., & Gatti, M. (2014). Deep convolutional neural networks for sentiment analysis of short texts. COLING 2014 - 25th International Conference on Computational Linguistics, Proceedings of COLING 2014: Technical Papers.

https://www.researchgate.net/publication/274380447_Deep_Convolutional_Neural_Networks_for_Sentiment_Analysis_of_Short_Texts

Giddy, J. K. (2018). Adventure tourism motivations: A push and pull factor approach. Bulletin of Geography. https://doi.org/10.2478/bog-2018-0030

Gorunescu, F. (2011). Data mining: Concepts, models and techniques. Intelligent Systems Reference Library. https://doi.org/10.1007/978-3-642-19721-5

Gupta, A., Bakshi, S., & Dogra, N. (2018). Engaging consumers in the digital era: An analysis of official tourism Facebook pages in India. Tourism, 66(1), 63–77. https://www.researchgate.net/publication/325286287_Engaging_consumers_in_the_digital_era_An_analysis_of_official_tourism_Facebook_pages_in_India

Gururaja, R. (2015). Impact of Social Media on Tourism and Hospitality. Sastech Technical Journal of RUAS. https://www.researchgate.net/publication/270393508_Impact_of_Social_Networking_ Sites_on_Hospitality_and_Tourism_Industries_Impact_of_Social_Networking_Sites_on_Hospitality_and_Tourism_Industries

Huang, Y. A., You, Z. H., Chen, X., Chan, K., & Luo, X. (2016). Sequence-based prediction of proteinprotein interactions using weighted sparse representation model combined with global encoding. BMC Bioinformatics. https://doi.org/10.1186/s12859-016-1035-4

Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons. https://doi.org/10.1016/j.bushor.2009.09.003

Katsikari, C., Hatzithomas, L., Fotiadis, T., & Folinas, D. (2020). Push and pull travel motivation: Segmentation of the greek market for social media marketing in tourism. Sustainability (Switzerland). https://doi.org/10.3390/su12114770

Khuong, M. N., & Ha, H. T. T. (2014). The Influences of Push and Pull Factors on the International Leisure Tourists’ Return Intention to Ho Chi Minh City, Vietnam — A Mediation Analysis of Destination Satisfaction. International Journal of Trade, Economics and Finance. https://doi.org/10.7763/ijtef.2014.v5.421

Kowsari, K., Meimandi, K. J., Heidarysafa, M., Mendu, S., Barnes, L., & Brown, D. (2019). Text classification algorithms: A survey. In Information (Switzerland). https://doi.org/10.3390/info10040150

Nomleni, P. (2015). Sentiment Analysis Menggunakan Support Vector Machine ( SVM ). Seminar Nasional Teknologi Dan Komunikasi 2015, 2015(Sentika), 1–8. http://repository.its.ac.id/41821/1/2213206717-Master%20Thesis.pdf

Qian, J., Niu, Z., & Shi, C. (2018). Sentiment analysis model on weather related tweets with deep neural network. ACM International Conference Proceeding Series. https://doi.org/10.1145/3195106.3195111

Qian, L. I., Peng, H., Jianxin, L. I., Congyin, X. I. A., Lifang, H. E., Lichao, S. U. N., Yang, R., & Philip, S. Y. U. (2020). A Survey on Text Classification: From Shallow to Deep Learning. In arXiv. https://arxiv.org/pdf/2008.00364.pdf

Ramadhani, A. M., & Goo, H. S. (2017). Twitter sentiment analysis using deep learning methods. Proceedings - 2017 7th International Annual Engineering Seminar, InAES 2017. https://doi.org/10.1109/INAES.2017.8068556

Siregar, R. R. A., Sinaga, F. A., & Arianto, R. (2017). Aplikasi Penentuan Dosen Penguji Skripsi Menggunakan Metode TF-IDF dan Vector Space Model. Computatio : Journal of Computer Science and Information Systems. https://doi.org/10.24912/computatio.v1i2.1014

Sudiantoro, A. V., & Zuliarso, E. (2018). Analisis Sentimen Twitter Menggunakan Text Mining Dengan Algoritma Naïve Bayes Classifier. Prosiding SINTAK 2018. https://www.unisbank.ac.id/ojs/index.php/sintak/article/view/6649

Susanti, N. D., Sediyono, E., & Sembiring, I. (2016). Uji Perbandingan Akurasi Analisis Sentimen Pariwisata menggunakan Algoritma Support Vektor Machine dan Naive Bayes. Nusantara of Enginering. https://ojs.unpkediri.ac.id/index.php/noe/article/view/12338

Tripathi, P., Vishwakarma, S. K., & Lala, A. (2016). Sentiment Analysis of English Tweets Using Rapid Miner. Proceedings - 2015 International Conference on Computational Intelligence and Communication Networks, CICN 2015. https://doi.org/10.1109/CICN.2015.137

Wang, W., & Tang, Y. (2016). Improvement and Application of TF-IDF Algorithm in Text Orientation Analysis. https://doi.org/10.2991/amsee-16.2016.61

Ye, J., Ren, H., & Zhou, H. (2015). An IG-RS-SVM classifier for analyzing reviews of E-commerce product. Icitmi, 601–606. https://doi.org/10.2991/icitmi-15.2015.98

Downloads

Published

2025-06-15