A Systematic Review of Geothermal-Solar Hybrid Systems: Design, Performance, Operational Advantages, and Configuration Principles
DOI:
https://doi.org/10.56127/ijst.v4i2.2204Keywords:
Geothermal Power Plant, Solar Energy, Hybrid System, Sustainable EnergyAbstract
Indonesia’s dependence on fossil fuels has resulted in significant environmental degradation and contributes to rising CO₂ emissions, despite the country’s vast renewable energy potential. Geothermal and solar energy, as two of the most promising clean energy sources, offer complementary characteristics that can be leveraged in hybrid power systems. This study aims to identify optimal configuration strategies for hybrid geothermal–solar systems and evaluate their operational advantages over standalone geothermal plants in the Indonesian context. Employing a Systematic Literature Review (SLR) approach, this research synthesizes findings from recent literature (2012–2024) across major scientific databases. The review focuses on system design, working principles, thermodynamic performance, and implementation feasibility. Results show that preheating/superheating configurations using solar input can significantly enhance geothermal plant efficiency, increase brine enthalpy, and reduce scaling issues—common challenges in Indonesian geothermal operations. Hybrid systems demonstrate an average efficiency gain of 3–7% over conventional configurations. While these systems offer improved reliability, flexibility, and land use optimization, they also involve technical complexity and high capital costs. This study underscores the potential of geothermal–solar hybrid systems to support Indonesia’s clean energy transition by increasing plant efficiency, reducing emissions, and optimizing renewable resource utilization.
References
Afif, F., & Martin, A. (2022). Tinjauan Potensi dan Kebijakan Energi Surya di Indonesia. Jurnal Engine: Energi, Manufaktur, Dan Material, 6(1), 43–52. https://www.researchgate.net/publication/362433776_Tinjauan_Potensi_dan_Kebijakan_Energi_Surya_di_Indonesia
Ahmad, A. H., Dermanto, P. S., & Juangsa, F. B. (2023). Thermodynamic and Economic Comparison of Organic Rankine Cycle and Kalina Cycle as Bottoming Unit to Utilize Exhaust Steam from Back Pressure Turbine Geothermal Power Plant. Workshop on Geothermal Reservoir Engineering. https://www.researchgate.net/publication/369202023
Ahn, E., & Kang, H. (2018). Introduction to systematic review and meta-analysis. Korean Journal of Anesthesiology, 71(2), 103–112. https://doi.org/10.4097/kjae.2018.71.2.103
Alvarenga, Y., Handal, S., & Recinos, M. (2008). Solar steam booster in the Ahuachapán geothermal field. In Proceedings of the Geothermal Resources Council Annual Meeting 2008 (pp. 335–339)
Astolfi, M., Xodo, L., Romano, M. C., & Macchi, E. (2011). Technical and economical analysis of a solar–geothermal hybrid plant based on an Organic Rankine Cycle. Geothermics, 40(1), 58–68. https://doi.org/10.1016/j.geothermics.2010.09.009
Ayub, M., Mitsos, A., & Ghasemi, H. (2015). Thermo-economic analysis of a hybrid solar-binary geothermal powerplant. Energy, 87, 326–335. https://doi.org/10.1016/j.energy.2015.04.106
Azarian, M., Yu, H., Shiferaw, A. T., & Stevik, T. K. (2023). Do We Perform Systematic Literature Review Right? A Scientific Mapping and Methodological Assessment. Logistics, 7(4), 89. https://doi.org/10.3390/logistics7040089
Berian, Z. Y., & Riyanto, H. (2021). A System Design of a Solar and Geothermal Hybrid Power Plant for Flores Island. IOP Conference Series: Earth and Environmental Science, 732(1). https://doi.org/10.1088/1755-1315/732/1/012016
Bonyadi, N., Johnson, E., & Baker, D. (2018). Technoeconomic and exergy analysis of a solar geothermal hybrid electric power plant using a novel combined cycle. Energy Conversion and Management, 156, 542–554. https://doi.org/10.1016/j.enconman.2017.11.052
Calise, F., D’Accadia, M. D., MacAluso, A., Piacentino, A., & Vanoli, L. (2016). Exergetic and exergoeconomic analysis of a novel hybrid solar-geothermal polygeneration system producing energy and water. Energy Conversion and Management, 115, 200–220. https://doi.org/10.1016/j.enconman.2016.02.029
Cardemil, J. M., Cortés, F., Díaz, A., & Escobar, R. (2016). Thermodynamic evaluation of solar-geothermal hybrid power plants in northern Chile. Energy Conversion and Management, 123, 348–361. https://doi.org/10.1016/j.enconman.2016.06.032
Ghasemi, H., Sheu, E., Tizzanini, A., Paci, M., & Mitsos, A. (2014). Hybrid solar-geothermal power generation: Optimal retrofitting. Applied Energy, 131, 158–170. https://doi.org/10.1016/j.apenergy.2014.06.010
Giedraityte, A., Rimkevicius, S., Marciukaitis, M., Radziukynas, V., & Bakas, R. (2025). Hybrid Renewable Energy Systems—A Review of Optimization Approaches and Future Challenges. Applied Sciences, 15(4), 1744. https://doi.org/10.3390/app15041744
Greenhut, A. D., Tester, J. W., DiPippo, R., Field, R., Love, C., Nichols, K., et al. (2010). Solar–geothermal hybrid cycle analysis for low‑enthalpy solar and geothermal resources. Paper presented at the World Geothermal Congress, Bali, Indonesia
Lentz, Á., & Almanza, R. (2006). Solar–geothermal hybrid system. Applied Thermal Engineering, 26(14–15), 1537–1544. https://doi.org/10.1016/j.applthermaleng.2005.12.008
Li, K., Liu, C., Jiang, S., & Chen, Y. (2020a). Review on hybrid geothermal and solar power systems. Journal of Cleaner Production, 250, 119481. https://doi.org/10.1016/j.jclepro.2019.119481
Li, K., Liu, C., Jiang, S., & Chen, Y. (2020b). Review on hybrid geothermal and solar power systems. Journal of Cleaner Production, 250. https://doi.org/10.1016/j.jclepro.2019.119481
Manente, G., Field, R. P., DiPippo, R., & Rossi, N. (2011). Hybrid solar-geothermal power generation to increase the energy production from a binary geothermal plant. Proceedings of the New Zealand Geothermal Workshop, January 2011, paper: An in-depth assessment of hybrid solar–geothermal power generation.
McTigue, J. D., Castro, J., Mungas, G., Kramer, N., King, J., Turchi, C., & Zhu, G. (2018a). Hybridizing a geothermal power plant with concentrating solar power and thermal storage to increase power generation and dispatchability. Applied Energy, 228(July), 1837–1852. https://doi.org/10.1016/j.apenergy.2018.07.064
McTigue, J. D., Castro, J., Mungas, G., Kramer, N., King, J., Turchi, C., & Zhu, G. (2018b). Hybridizing a geothermal power plant with concentrating solar power and thermal storage to increase power generation and dispatchability. Applied Energy, 228, 1837–1852. https://doi.org/10.1016/j.apenergy.2018.07.064
Mir, I., Escobar, R., Vergara, J., & Bertrand, J. (2011). Performance Analysis of a Hybrid Solar-Geothermal Power Plant in Northern Chile. 1281–1288. https://doi.org/10.3384/ecp110571281
Pambudi, N. A., Firdaus, R. A., Rizkiana, R., Ulfa, D. K., Salsabila, M. S., Suharno, & Sukatiman. (2023). Renewable Energy in Indonesia: Current Status, Potential, and Future Development. Sustainability (Switzerland), 15(3). https://doi.org/10.3390/su15032342
Peterseim, J. H., White, S., Tadros, A., & Hellwig, U. (2013). Concentrated solar power hybrid plants, which technologies are best suited for hybridisation? Renewable Energy, 57(2013), 520–532. https://doi.org/10.1016/j.renene.2013.02.014
Setyawati, D., & Setiawan, D. (2024). Laporan Ekspansi energi bersih Indonesia dapat mendorong pertumbuhan dan kesetaraan. https://ember-climate.org/app/uploads/2024/08/ID-Laporan-Ekspansi-energi-bersih-Indonesia-dapat-mendorong-pertumbuhan.pdf
Sisdwinugraha, A., Hapsari, A., Wijaya, F., Bintang, H. M., & Surya, I. (2025). Indonesia Energy Transition Outlook 2025 (Vol. 5). Institute for Essential Services Reform (IESR).
Solargis. (2019). Global Horizontal Irradiation - Africa. Solar Resource Maps. https://solargis.com/es/maps-and-gis-data/download/africa
Werner, T. T., Toumbourou, T., Maus, V., Lukas, M. C., Sonter, L. J., Muhdar, M., Runting, R. K., & Bebbington, A. (2023). Patterns of infringement, risk, and impact driven by coal mining permits in Indonesia. Ambio, 53(2), 242–256. https://doi.org/10.1007/s13280-023-01944-y
Zarrouk, S. J., & Moon, H. (2014). Efficiency of geothermal power plants: A worldwide review. Geothermics, 51, 142–153. https://doi.org/10.1016/j.geothermics.2013.11.001
Zhou, C. (2014). Hybridisation of solar and geothermal energy in both subcritical and supercritical Organic Rankine Cycles. Energy Conversion and Management, 81, 72–82. https://doi.org/10.1016/j.enconman.2014.02.007
Zhou, C., Doroodchi, E., & Moghtaderi, B. (2013). An in-depth assessment of hybrid solar–geothermal power generation. Energy Conversion and Management, 74, 88–101. https://doi.org/10.1016/j.enconman.2013.05.014
Zhou, C., Doroodchi, E., & Moghtaderi, B. (2011). A feasibility study on hybrid solar–geothermal power generation. In Proceedings of the New Zealand Geothermal Workshop (pp. 1–7)
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Richard Wempie Vicky Uguy, Estrela Bellia Muaja

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.













