The Effect of Temperature Variations on Sheet Press Machines on the Hardness and Toughness of PP (Polypropylene) and HDPE (High Density Polyethylene) Materials

Authors

  • Winda Sanni Slat Manado State Polytechnic
  • Steven Johny Runtuwene Manado State Polytechnic
  • Djefry Hosang Manado State Polytechnic
  • Agnes Wakkary Manado State Polytechnic
  • Yenni Sigalingging Manado State Polytechnic

DOI:

https://doi.org/10.56127/ijst.v4i3.2376

Keywords:

Hardness, Toughness, Polypropylene Materials, High Density Polyethylene , Sheet Press Machines, Temperature Variations

Abstract

Global plastic waste continues to grow, making recycling essential for supporting a circular economy. Process parameters, especially heating temperature during sheet pressing, strongly influence the quality of recycled products. Objective: This study investigates how heating temperature affects the impact toughness and hardness of recycled Polypropylene (PP) and High-Density Polyethylene (HDPE) produced using a sheet press machine, and identifies the optimal processing temperature for improved mechanical performance. Methodology: This research used a quantitative experimental approach. Recycled PP and HDPE were shredded, then heated at 160°C, 170°C, 180°C, and 190°C for 120 minutes, and molded into sheet specimens using a sheet press machine. Mechanical properties were evaluated using Charpy impact testing in accordance with ASTM D6110 and Rockwell hardness testing (M scale) following ASTM D785. Results were compared across temperature variations to determine performance trends. Findings: Both materials showed improved impact toughness and hardness as temperature increased up to 180°C, indicating better melt uniformity, fewer voids, and stronger molecular bonding. For HDPE, impact toughness increased from 2.3 J at 160°C to 8.675 J at 170°C, reaching its peak at 180°C, then decreased at 190°C, suggesting early thermal degradation. For PP, the highest average hardness was 15.52 HRM at 180°C, followed by a decline at 190°C, consistent with structural softening and reduced crystallinity. Implications: The results suggest that controlling heating temperature particularly around 180°C can enhance the manufacturing efficiency and product quality of recycled plastic sheets, supporting more reliable and sustainable material utilization. Originality: This study provides practical evidence on the temperature–property relationship for sheet-pressed recycled PP and HDPE under controlled heating conditions and confirms 180°C as an optimal temperature before thermal damage reduces structural integrity.

References

Akhmad, S., Lumintu, I., & Arendra, A. (2018). Development of Hot Press Molding for HDPE Recycling and Process Characterization. Proceedings of the International Conference on Science and Technology (ICST 2018). https://doi.org/10.2991/icst-18.2018.186

Arendra, A., & Akhmad, S. (2017). Rancang Bangun Mesin Hot Press untuk Recycle Plastik Hdpe dan Karakterisasi Pengaruh Temperatur Pemanasan Waktu Pemanasan dan Temperatur Pembukaan terhadap Cacat Flashing Cacat Warpage dan Konsumsi Energi Pencetakan. Rekayasa, 10(2), 108. https://doi.org/10.21107/rekayasa.v10i2.3612

Babaei, M., Jalilian, M., & Shahbaz, K. (2024). Chemical recycling of Polyethylene terephthalate: A mini-review. Journal of Environmental Chemical Engineering, 12(3), 112507. https://doi.org/10.1016/j.jece.2024.112507

Global Plastics Outlook. (2022). OECD. https://doi.org/10.1787/aa1edf33-en

Guan, N., Hu, C., Guan, L., Zhang, W., Yun, H., & Hu, X. (2020). A Process Optimization and Performance Study of Environmentally Friendly Waste Newspaper/Polypropylene Film Layered Composites. Materials, 13(2), 413. https://doi.org/10.3390/ma13020413

Hakim, J., Joharwan, J. W., & Heru Palmiyanto, M. (2020). Pengaruh Beda Temperatur Proses Injeksi Terhadap Sifat Mekanis Bahan Polypropylene (PP) Daur Ulang. JMPM (Jurnal Material Dan Proses Manufaktur), 4(2), 124–135. https://doi.org/10.18196/jmpm.v4i2.10758

Hedesiu, C., Demco, D. E., Kleppinger, R., Buda, A. A., Blümich, B., Remerie, K., & Litvinov, V. M. (2007). The effect of temperature and annealing on the phase composition, molecular mobility and the thickness of domains in high-density polyethylene. Polymer, 48(3), 763–777. https://doi.org/10.1016/j.polymer.2006.12.019

Houssini, K., Li, J., & Tan, Q. (2025). Complexities of the global plastics supply chain revealed in a trade-linked material flow analysis. Communications Earth & Environment, 6(1), 257. https://doi.org/10.1038/s43247-025-02169-5

J, R. B., & V, G. S. (2023). A systematic review on plastic waste conversion for a circular economy: recent trends and emerging technologies. Catalysis Science & Technology, 13(8), 2291–2302. https://doi.org/10.1039/D2CY02066A

Keskisaari, A., Kärki, T., & Vuorinen, T. (2019). Mechanical Properties of Recycled Polymer Composites Made from Side-Stream Materials from Different Industries. Sustainability, 11(21), 6054. https://doi.org/10.3390/su11216054

Lyutyy, P., Bekhta, P., Protsyk, Y., & Gryc, V. (2024). Hot-Pressing Process of Flat-Pressed Wood–Polymer Composites: Theory and Experiment. Polymers, 16(20), 2931. https://doi.org/10.3390/polym16202931

Prociak, A., Kurańska, M., Uram, K., & Wójtowicz, M. (2021). Bio-Polyurethane Foams Modified with a Mixture of Bio-Polyols of Different Chemical Structures. Polymers, 13(15), 2469. https://doi.org/10.3390/polym13152469

Ramagisandy, H., & Siswanto, R. (2021). ANALISA HASIL UJI KEKUATAN TARIK, TEKAN & STRUKTUR MAKRO SAMPAH PLASTIK JENIS PET, HDPE, DAN CAMPURAN (PET+HDPE). JTAM ROTARY, 3(2), 45–52. https://doi.org/10.20527/jtam_rotary.v3i2.4366

Sheard, J. (2018). Quantitative data analysis. In Research Methods (pp. 429–452). Elsevier. https://doi.org/10.1016/B978-0-08-102220-7.00018-2

Sitanggang, R., Indra Partha, C. G., & Arta Wijaya, I. wayan. (2024). ANALISIS PENGARUH SUHU PEMANASAN, WAKTU PEMANASAN DAN SUHU PEMBUKAAN TERHADAP CACAT WARPAGE DAN FLASHING PADA MESIN HOT PRESS PLASTIK HDPE. Jurnal SPEKTRUM, 11(1), 58. https://doi.org/10.24843/SPEKTRUM.2024.v11.i01.p7

Suwanprateeb, J. (2004). Rapid examination of annealing conditions for HDPE using indentation microhardness test. Polymer Testing, 23(2), 157–161. https://doi.org/10.1016/S0142-9418(03)00074-6

Woods, M. C., Brooks, C. K., & Pearce, J. M. (2024). Open-source cold and hot scientific sheet press for investigating polymer-based material properties. HardwareX, 19, e00566. https://doi.org/10.1016/j.ohx.2024.e00566

Zainudin, Z., & Suwantri, S. (2022). Pengaruh Holding Time terhadap Tingkat Kekerasan pada Hasil Pengolahan Limbah Plastik. Creative Research in Engineering, 2(2), 81. https://doi.org/10.30595/cerie.v2i2.13931

Zhang, W., Shen, J., Guo, X., Wang, K., Jia, J., Zhao, J., & Zhang, J. (2024). Comprehensive Investigation into the Impact of Degradation of Recycled Polyethylene and Recycled Polypropylene on the Thermo-Mechanical Characteristics and Thermal Stability of Blends. Molecules, 29(18), 4499. https://doi.org/10.3390/molecules29184499

Zheng, J., Arifuzzaman, M., Tang, X., Chen, X. C., & Saito, T. (2023). Recent development of end-of-life strategies for plastic in industry and academia: bridging their gap for future deployment. Materials Horizons, 10(5), 1608–1624. https://doi.org/10.1039/D2MH01549H

Downloads

Published

2025-12-31

How to Cite

Slat, W. S., Runtuwene, S. J., Djefry Hosang, Agnes Wakkary, & Yenni Sigalingging. (2025). The Effect of Temperature Variations on Sheet Press Machines on the Hardness and Toughness of PP (Polypropylene) and HDPE (High Density Polyethylene) Materials. International Journal Science and Technology, 4(3), 118–131. https://doi.org/10.56127/ijst.v4i3.2376

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.