Adi Soemarmo Airport Train Demand Modelling Based on Google Cloud Big Data

Authors

  • Ma’ruf Tsaghani Purnomo Faculty of Engineering, Universitas Diponegoro
  • Amelia Kusuma Indriastuti Faculty of Engineering, Universitas Diponegoro
  • Kami Hari Basuki Faculty of Engineering, Universitas Diponegoro
  • Diondi Toto Kusuma Faculty of Engineering, Universitas Diponegoro
  • Radhevio Izza Aghna Faculty of Engineering, Universitas Diponegoro

DOI:

https://doi.org/10.56127/jts.v4i3.2358

Keywords:

Demand Modelling, Public Transportation, Google Cloud Big Data, Transport Engineering

Abstract

The development of the Adi Soemarmo Airport Train route is necessary to optimise its services by increasing the load factor. One of the efforts that can be made to enhance the load factor includes demand modelling. Big Data provided by Google Cloud Big Data is utilised for its capacity to provide fast and large-scale trip data. This approach supports demand modelling carried out across regencies and cities as study areas for route development. The data is modelled with a four-stage transportation model, adopting zones based on sub-districts within the regencies and cities in the study area. The results indicate the emergence of potential demand through changes in transit points to transfer points in zones along the Madiun, Klaten, Wonogiri, and Gundih. These zones that have potential demand are chosen as the guidelines for developing the Adi Soemarmo Airport Train route.

References

Q. Xue, X. Yang, J. Wu, H. Sun, H. Yin, and Y. Qu, “Urban rail timetable optimization to improve operational efficiency with flexible routing plans: A nonlinear integer programming model,” Sustain., vol. 11, no. 13, 2019, doi: 10.3390/su11133701.

S. S. Roy and M. Kulshrestha, “Performance assessment study of indian railways – case of low efficiencies in large government monopoly,” Transp. Res. Rec., vol. 2675, no. 11, pp. 1272 – 1284, 2021, doi: 10.1177/03611981211025516.

G. Yadav and S. D. Ghodmare, “Transportation Planning Using Conventional Four Stage Modeling : An Attempt for Identification of Problems in a Transportation System,” Int. J. Sci. Res. Sci. Technol., pp. 556–567, 2021, doi: 10.32628/ijsrst218482.

O. Iliashenko, V. Iliashenko, and E. Lukyanchenko, “Big Data in Transport Modelling and Planning,” Transp. Res. Procedia, vol. 54, no. 2020, pp. 900–908, 2021, doi: 10.1016/j.trpro.2021.02.145.

J. Chmielewski, “Transport Demand Model Management System,” in IOP Conference Series: Materials Science and Engineering, 2019, p. 102068. doi: 10.1088/1757-899X/471/10/102068.

P. Soni and G. Tandan, “Improving Public Transport Systems Through Big Data Analytics: A Roadmap for Smarter Mobility Solutions,” 2025 Int. Conf. Autom. Comput. AUTOCOM 2025, pp. 1346–1350, 2025, doi: 10.1109/AUTOCOM64127.2025.10957109.

N. Effendy, A. Lukman M, E. Andarwati, S. T. F, P. Parawansa, and S. B. Ningsih, “Penggunaan Bigdata Transportasi Berpotensi Meningkatkan Efisiensi Sistem Transportasi Kota,” Action Res. Lit., vol. 7, no. 11, pp. 162–166, 2023.

J. Babatunde, T. Seyoum, A. Kassim, K. Ntsowe, S. F. Melesse, and H. S. El-mesery, “A review on the impact of big data analytics in transforming agricultural practices , food processing , and preservation strategies,” Appl. Food Res., vol. 5, no. 2, p. 101234, 2025, doi: 10.1016/j.afres.2025.101234.

T. Nguyen, H. Nguyen, and T. Nguyen-hoang, “Journal of Parallel and Distributed Computing Data quality management in big data : Strategies , tools , and educational implications,” J. Parallel Distrib. Comput., vol. 200, no. October 2024, p. 105067, 2025, doi: 10.1016/j.jpdc.2025.105067.

A. I. Torre-Bastida, J. Del Ser, I. Laña, M. Ilardia, M. N. Bilbao, and S. Campos-Cordobés, “Big Data for transportation and mobility: recent advances, trends and challenges,” IET Intell. Transp. Syst., vol. 12, no. 8, pp. 742–755, 2018, doi: https://doi.org/10.1049/iet-its.2018.5188.

L. Willumsen, “Use of Big Data in Transport Modelling,” Int. Transp. Forum Discuss. Pap., 2021.

J. Tigani and S. Naidu, Google BigQuery Analytics, 1st ed. Wiley Publishing, 2014.

Y. Zhao, H. Zhang, L. An, and Q. Liu, “Improving the approaches of traffic demand forecasting in the big data era,” Cities, vol. 82, pp. 19–26, 2018, doi: https://doi.org/10.1016/j.cities.2018.04.015.

O. Z. Tamin, Perencanaan dan Pemodelan Transportasi. Bandung: Penerbit ITB, 2000.

D. Li, Y. Tang, and Q. Chen, “Multi-Mode Traffic Demand Analysis Based on Multi-Source Transportation Data,” IEEE Access, vol. 8, pp. 65005–65019, 2020, doi: 10.1109/ACCESS.2020.2985092.

R. N. Shukla and T. Vyas, “Calibration of Gravity Model with Impedance Factors for Medium Town in India,” GRD J. Eng., vol. 3, no. GRDCF010, pp. 29–35, 2018.

U. Petruccelli and A. Racina, “Feeder-trunk and direct-link schemes for public transit: a model to evaluate the produced accessibility,” Public Transp., vol. 13, no. 2, pp. 301–323, 2021, doi: 10.1007/s12469-021-00262-4.

T. Dudek and A. Kujawski, “The Concept of Big Data Management with Various Transportation Systems Sources as a Key Role in Smart,” Energies, vol. 15, no. 24, p. 9506, 2022.

M. Zhu, P. Yuan, and H. Cui, “Analysis of Intercity Transportation Network Efficiency Using Flow-Weighted Time Circuity: A Case Study of Seven Major City Clusters in China,” Appl. Sci., vol. 14, no. 9, 2024, doi: 10.3390/app14093834.

O. Cats and E. Jenelius, “Beyond a complete failure: the impact of partial capacity degradation on public transport network vulnerability,” Transp. B, vol. 6, no. 2, pp. 77–96, 2018, doi: 10.1080/21680566.2016.1267596.

R. Sun, F. Xie, S. Huang, and Y. Shao, “Construction and Characteristics Analysis of the Xi’an Public Transport Network Considering Single-Mode and Multi-Mode Transferring,” Sustain. , vol. 16, no. 9, 2024, doi: 10.3390/su16093846.

S. Chowdhury and A. Ceder, “Users’ willingness to ride an integrated public-transport service: A literature review,” Transp. Policy, vol. 48, pp. 183 – 195, 2016, doi: 10.1016/j.tranpol.2016.03.007.

G. Currie and J. Rose, “Growing patronage - Challenges and what has been found to work,” Res. Transp. Econ., vol. 22, no. 1, pp. 5 – 11, 2008, doi: 10.1016/j.retrec.2008.05.003.

Downloads

Published

2025-10-27

How to Cite

Purnomo, M. T., Indriastuti, A. K., Basuki, K. H., Kusuma, D. T., & Aghna, R. I. (2025). Adi Soemarmo Airport Train Demand Modelling Based on Google Cloud Big Data. Jurnal Teknik Dan Science, 4(3), 28–38. https://doi.org/10.56127/jts.v4i3.2358

Similar Articles

<< < 1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.