MENINGKATKAN EFISIENSI PENGENDALIAN SUHU BOILER PADA PLTSa BURANGKENG MELALUI ANALISIS KOMPREHENSIF BERBASIS MACHINE LEARNING
DOI:
https://doi.org/10.56127/jts.v2i3.994Keywords:
waste management, waste-to-energy (wte), machine learning, operational efficiencyAbstract
Waste management has become an urgent issue in many regions, prompting the need for sustainable solutions in its treatment. Waste-to-Energy (WtE) power plants have emerged as a promising option, but manual control issues within them have raised some serious challenges. Temperature variations in the boiler pose a threat to efficiency and productivity, resulting in significant economic losses and adverse environmental impacts. To address this problem, this research aims to apply Machine Learning to optimize boiler temperature control. Operational data is collected and used to train a Machine Learning model capable of accurately predicting temperature. This model is then implemented into the boiler control system. The research results indicate a significant improvement in temperature stability and a reduction in operational costs. The utilization of Machine Learning technology has paved the way for more efficient and sustainable operations. With the successful implementation of Machine Learning in boiler control, this research emphasizes the crucial role of advanced technology in the development of sustainable energy industries. In conclusion, the application of Machine Learning can provide an effective solution to temperature control issues, significantly optimizing efficiency and productivity. Therefore, this research makes a valuable contribution to more efficient waste management, has a positive impact on the environment, and supports the achievement of cleaner and more sustainable renewable energy goals.
References
Qodriyatun, S.N. (2021) 'Pembangkit Listrik Tenaga Sampah: Antara Permasalahan Lingkungan dan Percepatan Pembangunan Energi Terbarukan', Jurnal Qodriyatun, 12(1), hal. 1-10.
ekon.go.id. (2021) 'Pengolahan Sampah Menjadi Energi Listrik (PSEL) sebagai Intervensi Teknologi Mengurangi Volume Sampah', 21 Jun. https://www.ekon.go.id/publikasi/detail/3105/pengolahan-sampah-menjadi-energi-listrik-psel-sebagai-intervensi-teknologi-mengurangi-volume-sampah
Amalia, A., et al. (2020) 'Thermohygrometer dengan Penyimpanan Data untuk Monitoring Kamar Bedah', Program Vokasi Teknik Elektromedik, Universitas Muhammadiyah Yogyakarta.
Hou, G.Q. (2013) 'The Application Study of Temperature Control Strategy for Boiler', Applied Mechanics and Materials. DOI: 10.4028/www.scientific.net/amm.313-314.462, Vol. 313-314, hal. 462-465.
Ding, Y., & Shi, Y. (7 Mar 2019). Real-Time Boiler Control Optimization with Machine Learning. arXiv preprint arXiv:1903.04958
Rosyadi, I. (2018). Desain Awal Pembangkit Listrik Menggunakan Bahan Bakar Sampah Kota Cilegon Dengan Kapasitas 2 MW. FLYWHEEL: JURNAL TEKNIK MESIN UNTIRTA.
Sahda, N. T. (Januari 2022). Analisis Efisiensi Boiler menggunakan Metode Langsung di Pembangkit Listrik Tenaga Sampah (PLTSa) Bantargebang. Journal of Engineering Environmental Energy and Science, 1(1), 39-48.
Yang, Z., Sheng, Y., Zhu, C., Ni, J., Zhu, Z., Xi, J., Zhang, W., & Yang, J. (May 2022). Accurate and explainable machine learning for the power factors of diamond-like thermoelectric materials. Journal of Materiomics, 8(3), 633-639
Reddy, R., Ramesh, R., Deshpande, A., Khapra, M.M. (2019) 'FigureNet: A Deep Learning model for Question-Answering on Scientific Plots', e-Print Archive, arXiv:1806.04633v2 [cs.CL].
Yunior, L.S. (2023) 'Pemanfaatan Pembangkit Listrik Tenaga Sampah sebagai Solusi Alternatif dalam Permasalahan Sampah di Indonesia', Tesis, Fakultas Hukum, Universitas Indonesia. Pembimbing: H. Nursadi, Penguji: W. Awiati, H. Prasetiyo, S.N. Setyorini.