Design and Development of a Bacteria Incubator Based on Arduino Mega Microcontroller with LCD Touch Screen Display
DOI:
https://doi.org/10.56127/jukeke.v4i2.2186Keywords:
Bacterial Incubator, Arduino Mega2560, BME280 Sensor, Automation, LCD TFTAbstract
The bacterial incubator plays a crucial role in culturing microorganisms, particularly in biotechnology research and its applications. This research focuses on the development of a bacterial incubator system utilizing the Arduino Mega2560 microcontroller, operating within a temperature range of 35°C to 50°C. The system incorporates a BME280 sensor for temperature and humidity detection, a TFT touchscreen LCD for user interaction, and an integrated control mechanism for regulating both temperature and incubation duration. Performance testing involved comparing sensor readings from the prototype against standard measuring devices, yielding an average temperature deviation of 0.61%, indicating reliable and precise performance. The device also features automatic regulation of environmental conditions and real-time data visualization, ensuring consistent incubation settings based on predefined criteria. Overall, testing confirmed that the incubator performs effectively and aligns with the intended design parameters.
References
Hidayat, A. W. (2012). Rancang Bangun Bakteri Inkubator Berbasis Atmega16. Akademi Elektro Medik Semarang.
Kukel, D. (2020). Bacillus sp Forming A Biofilm SEM [Online]. Retrieved from https://www.sciencephoto.com/media/798955/view/bacillus-sp-forming-a-biofilm-sem
Maggadani, B. P. (2017). Skrining dan Evaluasi Aktivitas Kitinase dari Sembilan Isolat Bakteri Lokal. Original Article, 4(1).
Permadi, A. B., et al. (2013). Inkubator Bakteri Berbasis Atmega 8535. Teknik Elektromedik Politeknik Kesehatan Surabaya.
Wijayanto, A. (2017). Perencanaan dan Pembuatan Bakteri Inkubator dengan Pendeteksi Warna Bakteri. Akademi Elektro Medik Semarang.
Anonim. (2015). Thermus aquaticus Penghasil Taq [Online]. Retrieved from https://www.edubio.info/2015/03/thermus-aquaticus-penghasil-taq.html
Anonim. (2016). Kegunaan dan Fungsi Arduino [Online]. Retrieved from http://electricityofdream.blogspot.com/2016/09/kegunaandanfungsiarduino.html
Anonim. (2018). UNO R3 SMT [Online]. Retrieved from https://robotdyn.com/uno-r3-smt-atmega328-usb-serial-ch340g-micro-usb.html
Anonim. (2019). E-coli Eats Carbon Dioxide [Online]. Retrieved from https://www.forbes.com/sites/forbestechcouncil/2019/10/10/e-coli-eats-carbon-dioxide/
Anonim. (2020). Perbandingan Jenis-Jenis Arduino UNO [Online]. Retrieved from https://cncbandunggo.blogspot.com/2019/11/22-perbandingan-jenis-jenis-arduino-uno.html
Tasneem, A. (n.d.). Design and Implementation of a Bacteriological Incubator. Retrieved from https://scholar.ppu.edu/bitstream/handle/123456789/8749/Design%20and%20Implementation%20of%20a%20Bacteriological%20Incubator%20%28Tasneem%29.pdf
Sofiyan, M., Saputra, A. I., Sukma, C., & Nasrulloh, A. (2019). Infant Incubator Temperature Controlled and Infant Body Temperature Monitor using Arduino Mega2560 and ADS1232. International Journal of Computer Techniques, 6(6). https://doi.org/10.29126/23942231/IJCT-V6I6P6
Alimuddin, A., Arafiyah, R., Saraswati, I., Alfanz, R., Hasudungan, P., & Taufik, T. (2021). Development and Performance Study of Temperature and Humidity Regulator in Baby Incubator Using Fuzzy-PID Hybrid Controller. Energies, 14(20), 6505. https://doi.org/10.3390/en14206505
Abd El-Aziz, R. M., & Taloba, A. I. (2021). Real Time Monitoring and Control of Neonatal Incubator using IoT. arXiv preprint arXiv:2112.02071. https://arxiv.org/abs/2112.02071
Rossi, V. M., Davidson, K. C., & Moore, L. E. (2022). An Arduino-based, low-cost imaging incubator for extended live cell imaging. arXiv preprint arXiv:2206.02542. https://arxiv.org/abs/2206.02542.













