Effects of Fuel Injector Seat Angle on Power, Torque, and Exhaust Emissions of a Single-Cylinder Four-Stroke Engine

Authors

  • Eko Surjadi Surakarta University
  • Wijoyo Wijoyo Surakarta University
  • Diama Rizky Septiawan Politeknik Negeri Malang

DOI:

https://doi.org/10.56127/ijst.v4i3.2347

Keywords:

Angle, fuel injector, power, torque, exhaust emission

Abstract

This study aims to examine the relationship and comparison of motor performance based on different fuel injector angles in a fuel injection system, and to identify the optimal injector angle for improved engine performance. Fuel injection is a control technology that regulates the air–fuel mixture entering the combustion chamber with speed, precision, and proportional balance. An experimental method was employed using a 2020 motorcycle with a 108 cc engine. The tests conducted included torque, power, and exhaust emission measurements. Torque and power were measured using a dynamometer, while exhaust emissions were analyzed with a gas analyzer. The study compared injector mounting angles of 60°, 70°, and 80°. Results showed that torque increased significantly from low engine speeds (around 3000 rpm) and peaked between 3500–3750 rpm before gradually declining. Among the tested angles, the 80° injector position produced the highest torque across most speed ranges, reaching approximately 15 Nm at 3500 rpm. The 70° angle yielded moderate performance, while the 60° angle demonstrated the lowest torque, especially at medium to high speeds. Overall, the study found that increasing the injector angle enhances torque and power output, with average increases of 6.1% in power and 6.4% in torque.

References

Anugrah, A. (2024). Analisis jumlah lubang injektor dan nilai oktan terhadap kinerja motor bakar torak bensin. Jurnal Teknik Ilmu dan Aplikasi. Retrieved from http://jurnal.polinema.ac.id/index.php/jtia/article/view/4824

Arsana, I. M. (2021). Pengaruh penggunaan engine control unit (ECU) unlimiter terhadap engine motor bakar torak Yamaha V-Ixion 150 CC. Jurnal Pendidikan Teknik Mesin. Retrieved from https://ejournal.unesa.ac.id/index.php/jurnal-pendidikan-teknik-mesin/article/view/44488

Deepak, K., & Lakshmanan, T. (2020). Design and analysis of multi fuel injector. IOP Conference Series: Materials Science and Engineering, 912(2), 022032. https://doi.org/10.1088/1757-899X/912/2/022032

Deng, B., Jia, Y., Bo, Z., Deng, Z., & Gao, Z. (2020). Design and application of fuel injection drive circuit for engine test bench. Vibroengineering Procedia. Retrieved from https://www.extrica.com/article/21524

Diep, H. T., Nguyen, G. B., & Mohamad, B. (2023). Remapping and simulation of EFI system for SI engine using piggyback ECU. Acta Polytechnica. Retrieved from https://www.ojs.cvut.cz/ojs/index.php/ap/article/view/8418

Fatra, F., Mahendra, S., & Setiawan, I. (2023). Analisis re-mapping ECU terhadap performa mesin sepeda motor bakar torak injeksi 4 tak 150cc. Jurnal Taman Vokasi.

Fauzil, A. F., Fernandez, D., Maksum, H., & Setiawan, M. Y. (2023). Pengaruh penggunaan ECU racing dan injektor racing terhadap torsi, daya dan konsumsi bahan bakar pada sepeda motor bakar torak Jupiter MX King 150. Jurnal Teknologi.

Ferrari, A., Novara, C., Vento, O., Violante, M., & Zhang, T. (2023). A novel fuel injected mass feedback-control for single and multiple injections in direct injection systems for CI engines. Fuel, 334(2). https://doi.org/10.1016/j.fuel.2022.126670

Firat, M., & Varol, Y. (2019). Analysis of the effects of injection strategies on combustion characteristics and pollutant emissions in a multiple direct injection diesel engine. Journal of Thermal Science and Technology, 39(1), 1–15.

Francis, L. T., Pierozan, V. E., Gracioli, G., & others. (2022). Data-driven anomaly detection of engine knock based on automotive ECU. XII Brazilian Conference. Retrieved from https://ieeexplore.ieee.org/abstract/document/9965059/

Ganesan, N., Viswanathan, K., Karthic, S. V., Ekambaram, P., Wu, W., & Vo, D.-V. N. (2022). Split injection strategies based RCCI combustion analysis with waste cooking oil biofuel and methanol in an open ECU assisted CRDI engine. Fuel, 319, 123710. https://doi.org/10.1016/j.fuel.2022.123710

Hadi, M. F. A., Abidin, A., & Bahri, M. H. (2024). Pengaruh konversi injeksi pada motor bakar torak sport 200 CC terhadap performa dan efisiensi bahan bakar. National Multidisciplinary Sciences, 301–310. Retrieved from http://proceeding.unmuhjember.ac.id/index.php/nms/article/view/549

Hambali, H., Margianto, M., & Robbi, N. (2024). Pengaruh perbandingan ECU standar dan ECU Juken pada sistem injektor terhadap kinerja mesin motor bakar torak Scoopy 110 CC. Jurnal Teknik Mesin. Retrieved from https://jim.unisma.ac.id/index.php/jts/article/view/23720

Handriyanto, R., & Ponidi, P. (2024). Analisa re-mapping ECU terhadap performa dan emisi gas buang pada motor bakar torak injeksi Scoopy 110. Sultra Journal of Mechanics. Retrieved from http://jurnal-unsultra.ac.id/index.php/sjme/article/view/683

Karthic, S. V., & Kumar, M. S. (2021). Experimental investigations on hydrogen biofueled reactivity controlled compression ignition engine using open ECU. Energy. Retrieved from https://www.sciencedirect.com/science/article/pii/S0360544221010355

Kim, J. B., & Lee, C. H. (2020). Fuel injection characteristic measurements under a transient injector driving condition using an injector driving algorithm. Journal of Mechanical Science and Technology. https://doi.org/10.1007/s12206-020-0839-3

Mofijur, M., Hasan, M. M., Mahlia, T. M. I., Rahman, S. M. A., Silitonga, A. S., & Ong, H. C. (2019). Performance and emission parameters of homogeneous charge compression ignition (HCCI) engine: A review. Energies, 12(18). https://doi.org/10.3390/en12183557

Pham, V. C., Le, V. V., Yeo, S., Choi, J. H., & Lee, W. J. (2022). Effects of the injector spray angle on combustion and emissions of a 4-stroke natural gas-diesel DF marine engine. Applied Sciences, 12(23), 11886. https://doi.org/10.3390/app122311886

Pham, V. V. (2020). An optimal research for diesel engine using biofuels fuel when considering the effects of the change of parameters on ECU. AIP Conference Proceedings. Retrieved from https://pubs.aip.org/aip/acp/article-abstract/2207/1/030002/972893

Pratama, F. H., Abidin, A., & Bahri, M. H. (2024). Analisis performa sepeda motor bakar torak sistem injeksi 110 CC menggunakan ECU standar dan ECU standar remap. Jurnal Engineering Science and Technology, 2(2), 46–52. Retrieved from https://jesty.pubmedia.id/index.php/jesty/article/view/25

Purwanto, W., Firmansyah, M. S., & Maksum, H. (2024). Analysis exhaust emissions (CO, CO₂ and HC) on FI motor bakar torak cycle with variations in ignition timing, injector timing and fuel variations. BIS Energy and Engineering, V124033-1–V124033-11. https://doi.org/10.31603/biseeng.80

Setiadi, B., Permana, Y. R., & Hadi, V. (2024). Analisis perbandingan performa menggunakan elektronik control unit (ECU) standar dan ECU racing (BRT Juken 5+) pada sepeda motor bakar torak mesin K56 E1 DOHC 4. Sainstech: Jurnal Penelitian dan Pengkajian Sains dan Teknologi, 34(1), 64–71. https://doi.org/10.37277/stch.v34i1.1999

Stepanenko, D., & Kneba, Z. (2020). ECU calibration for gaseous dual fuel supply system in compression ignition engines. Combustion Engines. Retrieved from https://bibliotekanauki.pl/articles/2097470.pdf

Sudartomo, B. (2023). ECU (Electronic Control Unit) tipe Juken 5 terhadap performa daya, torsi dan konsumsi bahan bakar pada motor bakar torak Vario 150 CC. Universitas Mercubuana Repository. Retrieved from https://repository.mercubuana.ac.id/75864/

Syaka, D. R. B., Mahir, I., & Muslim, G. M. (2023). Perbandingan variasi durasi injeksi dan waktu pengapian terhadap performa daya mesin motor bakar torak 4 langkah menggunakan bahan bakar Pertamax. Jurnal Konversi Energi dan Manufaktur. Retrieved from https://www.academia.edu/download/101413654/14284.pdf

Syaka, D. R. B., Purwoko, A. T., & others. (2022). Design and experiment of a prototype electronic control unit direct injection fuel system Arduino-based for 2-stroke spark ignition engine. Automotive Experiences. Retrieved from https://journal.unimma.ac.id/index.php/AutomotiveExperiences/article/view/5472

Yanoto, K. (2022). Control device for fuel injection valve and fuel injection system (U.S. Patent No. 11,466,653). Retrieved from https://patents.google.com/patent/US11466653B2/en

Downloads

Published

2025-11-20

How to Cite

Surjadi, E., Wijoyo, W., & Septiawan, D. R. (2025). Effects of Fuel Injector Seat Angle on Power, Torque, and Exhaust Emissions of a Single-Cylinder Four-Stroke Engine. International Journal Science and Technology, 4(3), 13–26. https://doi.org/10.56127/ijst.v4i3.2347

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.