Computational Analysis of Bioethanol Production from Arenga Pinnata Sap using Rice Husk Biomass Heating: Statistical Modeling of Fermentation Time Effects on Alcohol Yield

Authors

DOI:

https://doi.org/10.56127/ijst.v4i3.2348

Keywords:

Bioethanol, Renewable Energy, Computational Optimization, Biomass

Abstract

This study presents a comprehensive computational analysis of sustainable bioethanol production from Arenga pinnata sap using rice husk biomass as a renewable heating source. The research investigated fermentation time effects on alcohol yield through systematic experimentation and Python-based statistical modeling across four conditions: fresh sap, 1-day, 3-day, and 18-day fermentation periods. Distillation processes utilized 8.5 kg rice husk biomass at 80°C for 1.42 hours, producing 600 ml bioethanol per batch. Statistical analysis revealed a highly significant inverse correlation (r = -0.965, p < 0.05) between fermentation duration and alcohol content. Fresh palm sap yielded optimal alcohol concentration of 39.67 ± 7.76%, while 18-day fermentation reduced yield to 2.50 ± 2.50%, representing 93.7% decrease. The exponential decay model (R² = 0.984) demonstrated superior predictive accuracy compared to linear regression. The integrated system achieved 70.6 ml bioethanol per kg rice husk with positive energy balance (1.23 MJ output per MJ input), confirming commercial viability for rural renewable energy applications. This computational framework establishes optimal processing parameters for agricultural waste-powered biofuel systems, supporting circular economy principles and rural energy independence through effective biomass utilization in tropical regions.

Author Biographies

Alfred Noufie Mekel, Politeknik Negeri Manado

Mechanical Engineering

Firmansyah Reskal Motulo, Politeknik Negeri Manado

Mechanical Engineering

References

Abbas, A., & Ansumali, S. (2010). Global Potential of Rice Husk as a Renewable Feedstock for Ethanol Biofuel Production. BioEnergy Research, 3(4), 328–334. https://doi.org/10.1007/s12155-010-9088-0

Ahmadipour, M., Ridha, H. M., Ali, Z., Zhining, Z., Ahmadipour, M., Othman, M. M., & Ramachandaramurthy, V. K. (2025). A comprehensive review on biomass energy system optimization approaches: Challenges and issues. International Journal of Hydrogen Energy, 106, 1167–1183. https://doi.org/10.1016/j.ijhydene.2025.02.027

Ansar, Nazaruddin, Azis, A. D., & Fudholi, A. (2021). Enhancement of bioethanol production from palm sap (Arenga pinnata (Wurmb) Merr) through optimization of Saccharomyces cerevisiae as an inoculum. Journal of Materials Research and Technology, 14, 548–554. https://doi.org/10.1016/j.jmrt.2021.06.085

Chavan, S., Mitra, D., & Ray, A. (2024). Harnessing rice husks: Bioethanol production for sustainable future. Current Research in Microbial Sciences, 7, 100298. https://doi.org/10.1016/j.crmicr.2024.100298

Ghribi, Y., Graha, E. R., & Wicaksono, H. (2025). Comparative Analysis of Statistical and Machine Learning Models for Enhancing Demand Forecasting Accuracy in the Medical Device Industry. Procedia CIRP, 134, 849–854. https://doi.org/10.1016/j.procir.2025.02.209

Gray, K. A., Zhao, L., & Emptage, M. (2006). Bioethanol. Current Opinion in Chemical Biology, 10(2), 141–146. https://doi.org/10.1016/j.cbpa.2006.02.035

Hamze, H., Akia, M., & Yazdani, F. (2015). Optimization of biodiesel production from the waste cooking oil using response surface methodology. Process Safety and Environmental Protection, 94, 1–10. https://doi.org/10.1016/j.psep.2014.12.005

Joseph, P., Gabriel, O., Richard, A., & Godwin, A. (2014). Bioethanol Potential from Oil Palm Sap in Ghana. In INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH Osei Gabriel (Vol. 4, Issue 1).

Juárez-Hernández, S., & Castro-González, A. (2015). Design and economic evaluation of a prototype biogas plant fed by restaurant food waste. In Article in International Journal of Renewable Energy Research. https://www.researchgate.net/publication/316426970

Koh, L. P., & Ghazoul, J. (2008). Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities. Biological Conservation, 141(10), 2450–2460. https://doi.org/10.1016/j.biocon.2008.08.005

Kumar, J. A., Sathish, S., Prabu, D., Renita, A. A., Saravanan, A., Deivayanai, V. C., Anish, M., Jayaprabakar, J., Baigenzhenov, O., & Hosseini-Bandegharaei, A. (2023). Agricultural waste biomass for sustainable bioenergy production: Feedstock, characterization and pre-treatment methodologies. Chemosphere, 331, 138680. https://doi.org/10.1016/j.chemosphere.2023.138680

Maidangkay, A., & Dosoputranto, E. (n.d.). Pengaruh Lamanya Fermentasi dan Temperatur Destilasi Nira Aren (Saguer) Terhadap Kualitas Bioetanol. In Jurnal Masina Nipake Jurusan Teknik Mesin (Vol. 1, Issue 1).

Tillman, D. A. (2000). Biomass cofiring: the technology, the experience, the combustion consequences. Biomass and Bioenergy, 19(6), 365–384. https://doi.org/10.1016/S0961-9534(00)00049-0

Victor, I., & Orsat, V. (2018). Characterization of Arenga pinnata (Palm) Sugar. Sugar Tech, 20(1), 105–109. https://doi.org/10.1007/s12355-017-0537-3

Wu, J., Elliston, A., Le Gall, G., Colquhoun, I. J., Collins, S. R. A., Wood, I. P., Dicks, J., Roberts, I. N., & Waldron, K. W. (2018). Optimising conditions for bioethanol production from rice husk and rice straw: effects of pre-treatment on liquor composition and fermentation inhibitors. Biotechnology for Biofuels, 11(1), 62. https://doi.org/10.1186/s13068-018-1062-7

Downloads

Published

2025-11-21

How to Cite

Saroinsong, T., Mekel, A. N., & Motulo, F. R. (2025). Computational Analysis of Bioethanol Production from Arenga Pinnata Sap using Rice Husk Biomass Heating: Statistical Modeling of Fermentation Time Effects on Alcohol Yield. International Journal Science and Technology, 4(3), 27–41. https://doi.org/10.56127/ijst.v4i3.2348

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)