Computer Vision-Based Automated Waste Sorting System for Plastic and Organic Waste Classification Using Color and Shape Features

Authors

  • Rick Resa Wahani Politeknik Negeri Manado
  • Michael Edward G. Kimbal Politeknik Negeri Manado
  • Deko Trio Desembara Politeknik Negeri Manado
  • Leonardo Frando Pasla Politeknik Negeri Manado
  • Firmansyah Reskal Motulo Politeknik Negeri Manado

DOI:

https://doi.org/10.56127/ijst.v4i3.2384

Keywords:

Computer Vision, Geometric Descriptors, HSV, Overlap Ratio, Rule-Based Classification, Waste Sorting

Abstract

The increasing volume of municipal solid waste demands low-cost, real-time sorting solutions to improve recycling efficiency and reduce landfill burden. Objective: This study develops and evaluates a low-cost, real-time computer vision system to classify plastic waste and organic leaf waste for automated sorting. Methodology: The system uses a standard RGB camera (640×480, 30 fps) and OpenCV-based processing, including Gaussian blurring, HSV color-space conversion, morphological operations, contour detection, and geometric feature extraction (circularity, solidity, aspect ratio, and extent). Classification is performed using a hierarchical rule-based logic that combines HSV color masks with a proposed overlap ratio to quantify the spatial correspondence between object contours and leaf-color regions. Findings: Experimental testing under controlled illumination (500–1000 lux) achieved 89% overall accuracy with an average processing time of 45 ms/frame and an operational throughput of approximately 7 objects/min. The system correctly classified 8 plastic items and 7 leaf samples in the initial test set. Implications: The proposed approach supports practical deployment in small-scale or resource-constrained waste management facilities by enabling real-time sorting without large, labeled datasets or GPU hardware. Originality: This work introduces an interpretable hybrid decision framework that integrates a mask-based overlap ratio with multiple geometric shape descriptors, improving discrimination between plastic and leaf waste while maintaining computational efficiency.

References

Adedeji, O., & Wang, Z. (2019). Intelligent Waste Classification System Using Deep Learning Convolutional Neural Network. Procedia Manufacturing, 35, 607–612. https://doi.org/10.1016/j.promfg.2019.05.086

Aleluia, J., & Ferrão, P. (2016). Characterization of urban waste management practices in developing Asian countries: A new analytical framework based on waste characteristics and urban dimension. Waste Management, 58, 415–429. https://doi.org/10.1016/j.wasman.2016.05.008

Aral, R. A., Keskin, S. R., Kaya, M., & Haciomeroglu, M. (2018). Classification of TrashNet Dataset Based on Deep Learning Models. 2018 IEEE International Conference on Big Data (Big Data), 2058–2062. https://doi.org/10.1109/BigData.2018.8622212

Bobulski, J., & Kubanek, M. (2021). Deep Learning for Plastic Waste Classification System. Applied Computational Intelligence and Soft Computing, 2021, 1–7. https://doi.org/10.1155/2021/6626948

Bradski, G., Kaehler, A., Cambridge, B. ·, Farnham, ·, Köln, ·, Sebastopol, ·, Taipei, ·, & Tokyo, ·. (n.d.). Learning OpenCV.

Cheng, H. D., Jiang, X. H., Sun, Y., & Wang, J. (2001). Color image segmentation: advances and prospects. Pattern Recognition, 34(12), 2259–2281. https://doi.org/10.1016/S0031-3203(00)00149-7

da Fontoura Costa, L., & Cesar Jr., R. M. (2010). Shape Analysis and Classification. CRC Press. https://doi.org/10.1201/9781420037555

Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7). https://doi.org/10.1126/sciadv.1700782

Ghisellini, P., Cialani, C., & Ulgiati, S. (2016). A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. Journal of Cleaner Production, 114, 11–32. https://doi.org/10.1016/j.jclepro.2015.09.007

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, 82(1), 35–45. https://doi.org/10.1115/1.3662552

Kaza, S., Yao, L. C., Bhada-Tata, P., & Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Washington, DC: World Bank. https://doi.org/10.1596/978-1-4648-1329-0

Nafiz, Md. S., Das, S. S., Morol, Md. K., Al Juabir, A., & Nandi, D. (2023). ConvoWaste: An Automatic Waste Segregation Machine Using Deep Learning. 2023 3rd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), 181–186. https://doi.org/10.1109/ICREST57604.2023.10070078

Nasir, I., & Aziz Al-Talib, G. A. (2023). Waste Classification Using Artificial Intelligence Techniques:Literature Review. Technium: Romanian Journal of Applied Sciences and Technology, 5, 49–59. https://doi.org/10.47577/technium.v5i.8345

Risfendra, R., Ananda, G. F., & Setyawan, H. (2024). Deep Learning-Based Waste Classification with Transfer Learning Using EfficientNet-B0 Model. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 8(4), 535–541. https://doi.org/10.29207/resti.v8i4.5875

Vilventhan, A., Ram, V., & Sugumaran, S. (2019). Value stream mapping for identification and assessment of material waste in construction: A case study. Waste Management & Research: The Journal for a Sustainable Circular Economy, 37(8), 815–825. https://doi.org/10.1177/0734242X19855429

Vo, A. H., Hoang Son, L., Vo, M. T., & Le, T. (2019). A Novel Framework for Trash Classification Using Deep Transfer Learning. IEEE Access, 7, 178631–178639. https://doi.org/10.1109/ACCESS.2019.2959033

Yeuseyenka, I., Melnikau, I., & Yemelyanov, I. (2022). Detection and Selection of Moving Objects in Video Images Based on Impulse and Recurrent Neural Networks. Journal of Data Analysis and Information Processing, 10(02), 127–141. https://doi.org/10.4236/jdaip.2022.102008

Zhang, D., & Lu, G. (2004). Review of shape representation and description techniques. Pattern Recognition, 37(1), 1–19. https://doi.org/10.1016/j.patcog.2003.07.008

Zhao, L., Liu, J., & Wang, J. (2019). Path Planning of Sand Blasting Robot Based on Improved RRT Algorithm. 2019 IEEE International Conference on Mechatronics and Automation (ICMA), 1901–1906. https://doi.org/10.1109/ICMA.2019.8816383

Downloads

Published

2026-01-06

How to Cite

Rick Resa Wahani, Michael Edward G. Kimbal, Deko Trio Desembara, Leonardo Frando Pasla, & Motulo, F. R. (2026). Computer Vision-Based Automated Waste Sorting System for Plastic and Organic Waste Classification Using Color and Shape Features. International Journal Science and Technology, 4(3), 132–143. https://doi.org/10.56127/ijst.v4i3.2384

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.