Computational Analysis of Bioethanol Production from Arenga Pinnata Sap using Rice Husk Biomass Heating: Statistical Modeling of Fermentation Time Effects on Alcohol Yield
DOI:
https://doi.org/10.56127/ijst.v4i3.2348Keywords:
Bioethanol, Renewable Energy, Computational Optimization, BiomassAbstract
This study presents a comprehensive computational analysis of sustainable bioethanol production from Arenga pinnata sap using rice husk biomass as a renewable heating source. The research investigated fermentation time effects on alcohol yield through systematic experimentation and Python-based statistical modeling across four conditions: fresh sap, 1-day, 3-day, and 18-day fermentation periods. Distillation processes utilized 8.5 kg rice husk biomass at 80°C for 1.42 hours, producing 600 ml bioethanol per batch. Statistical analysis revealed a highly significant inverse correlation (r = -0.965, p < 0.05) between fermentation duration and alcohol content. Fresh palm sap yielded optimal alcohol concentration of 39.67 ± 7.76%, while 18-day fermentation reduced yield to 2.50 ± 2.50%, representing 93.7% decrease. The exponential decay model (R² = 0.984) demonstrated superior predictive accuracy compared to linear regression. The integrated system achieved 70.6 ml bioethanol per kg rice husk with positive energy balance (1.23 MJ output per MJ input), confirming commercial viability for rural renewable energy applications. This computational framework establishes optimal processing parameters for agricultural waste-powered biofuel systems, supporting circular economy principles and rural energy independence through effective biomass utilization in tropical regions.
References
Abbas, A., & Ansumali, S. (2010). Global Potential of Rice Husk as a Renewable Feedstock for Ethanol Biofuel Production. BioEnergy Research, 3(4), 328–334. https://doi.org/10.1007/s12155-010-9088-0
Ahmadipour, M., Ridha, H. M., Ali, Z., Zhining, Z., Ahmadipour, M., Othman, M. M., & Ramachandaramurthy, V. K. (2025). A comprehensive review on biomass energy system optimization approaches: Challenges and issues. International Journal of Hydrogen Energy, 106, 1167–1183. https://doi.org/10.1016/j.ijhydene.2025.02.027
Ansar, Nazaruddin, Azis, A. D., & Fudholi, A. (2021). Enhancement of bioethanol production from palm sap (Arenga pinnata (Wurmb) Merr) through optimization of Saccharomyces cerevisiae as an inoculum. Journal of Materials Research and Technology, 14, 548–554. https://doi.org/10.1016/j.jmrt.2021.06.085
Chavan, S., Mitra, D., & Ray, A. (2024). Harnessing rice husks: Bioethanol production for sustainable future. Current Research in Microbial Sciences, 7, 100298. https://doi.org/10.1016/j.crmicr.2024.100298
Ghribi, Y., Graha, E. R., & Wicaksono, H. (2025). Comparative Analysis of Statistical and Machine Learning Models for Enhancing Demand Forecasting Accuracy in the Medical Device Industry. Procedia CIRP, 134, 849–854. https://doi.org/10.1016/j.procir.2025.02.209
Gray, K. A., Zhao, L., & Emptage, M. (2006). Bioethanol. Current Opinion in Chemical Biology, 10(2), 141–146. https://doi.org/10.1016/j.cbpa.2006.02.035
Hamze, H., Akia, M., & Yazdani, F. (2015). Optimization of biodiesel production from the waste cooking oil using response surface methodology. Process Safety and Environmental Protection, 94, 1–10. https://doi.org/10.1016/j.psep.2014.12.005
Joseph, P., Gabriel, O., Richard, A., & Godwin, A. (2014). Bioethanol Potential from Oil Palm Sap in Ghana. In INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH Osei Gabriel (Vol. 4, Issue 1).
Juárez-Hernández, S., & Castro-González, A. (2015). Design and economic evaluation of a prototype biogas plant fed by restaurant food waste. In Article in International Journal of Renewable Energy Research. https://www.researchgate.net/publication/316426970
Koh, L. P., & Ghazoul, J. (2008). Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities. Biological Conservation, 141(10), 2450–2460. https://doi.org/10.1016/j.biocon.2008.08.005
Kumar, J. A., Sathish, S., Prabu, D., Renita, A. A., Saravanan, A., Deivayanai, V. C., Anish, M., Jayaprabakar, J., Baigenzhenov, O., & Hosseini-Bandegharaei, A. (2023). Agricultural waste biomass for sustainable bioenergy production: Feedstock, characterization and pre-treatment methodologies. Chemosphere, 331, 138680. https://doi.org/10.1016/j.chemosphere.2023.138680
Maidangkay, A., & Dosoputranto, E. (n.d.). Pengaruh Lamanya Fermentasi dan Temperatur Destilasi Nira Aren (Saguer) Terhadap Kualitas Bioetanol. In Jurnal Masina Nipake Jurusan Teknik Mesin (Vol. 1, Issue 1).
Tillman, D. A. (2000). Biomass cofiring: the technology, the experience, the combustion consequences. Biomass and Bioenergy, 19(6), 365–384. https://doi.org/10.1016/S0961-9534(00)00049-0
Victor, I., & Orsat, V. (2018). Characterization of Arenga pinnata (Palm) Sugar. Sugar Tech, 20(1), 105–109. https://doi.org/10.1007/s12355-017-0537-3
Wu, J., Elliston, A., Le Gall, G., Colquhoun, I. J., Collins, S. R. A., Wood, I. P., Dicks, J., Roberts, I. N., & Waldron, K. W. (2018). Optimising conditions for bioethanol production from rice husk and rice straw: effects of pre-treatment on liquor composition and fermentation inhibitors. Biotechnology for Biofuels, 11(1), 62. https://doi.org/10.1186/s13068-018-1062-7
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tineke Saroinsong, Alfred Noufie Mekel, Firmansyah Reskal Motulo

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.













