HUMAN GENDER DETECTION SYSTEM BASED ON FACIAL IMAGE USING CONVOLUTIONAL NEURAL NETWORK ALGORITHM

Authors

  • Abdul Roid Gunadarma University
  • Ivan Maurits Gunadarma University

DOI:

https://doi.org/10.56127/ijst.v2i1.847

Keywords:

Image processing, Convolutional Neural Network, deep learning, face recognition, gender, Python, TensorFlow, webcam

Abstract

The demand for system automation has been continuously increasing with the current technological developments. One of these advancements is in the implementation of face recognition. Camera capabilities have evolved from merely capturing images or videos to being able to process the resulting images. Facial images contain a wealth of information, one of which is the gender information of the individuals. To obtain this information, facial image classification using deep learning is required. In this scientific paper, the author utilizes the Convolutional Neural Network algorithm implemented with the Python programming language and employs TensorFlow as its framework. The research aims to predict human gender based on facial images. The dataset used in this study is obtained from the kaggle.com dataset provider, consisting of 9,600 male facial data and 9,600 female facial data. The data is divided into a training and testing set, with an 80% ratio for training data and a 20% ratio for testing data from the total available data. The model training process is performed for 15 epochs with 768 steps in each epoch. The testing results show that the Convolutional Neural Network method achieves a validation accuracy of approximately 91%. The developed program runs well through a webcam.

References

Bronshtein, A. (2017, May 17). Train/Test Split And Cross Validation In Python.

Brownlee, J. (2019). Deep Learning For Computer Vision: Image Classification, Object Detection, And Face Recognition In Python. Machine Learning Mastery.

Budi, A., Suma'inna, & Maulana, H. (2016). Pengenalan Citra Wajah Sebagai Identifier Menggunakan Metode Principal Component Analysis (PCA). JURNAL TEKNIK INFORMATIKA UIN Syarif Hidayatullah, 9(2), 166-175. Doi:Https://Doi.Org/10.15408/Jti.V9i2.5608

Cholissodin, I., & Soebroto, A. A. (2019). Ai, Machine Learning & Deep Learning (Teori & Implementasi). Malang: Fakultas Ilmu Komputer (Filkom), Universitas Brawijaya (Ub).

Dewi, S. R. (2018). Deep Learning Object Detection Pada Video Menggunakan Tensorflow Dan Convolutional Neural Network. Yogyakarta.

Fibrianto, A. S. (2016, April). Kesetaraan Gender Dalam Lingkup Organisasi Mahasiswa Universitas Sebelas Maret Surakarta Tahun 2016. Jurnal Analisa Sosiologi, 5(1), 10-27.

Godoy, D. (2018, November 22). Understanding Binary Cross-Entropy / Log Loss: A Visual Explanation.

Jamaaluddin, & Sulistyowati, I. (2021). Buku Ajar Kecerdasan Buatan (Artificial Intelligence). Sidoarjo: UMSIDA PRESS.

Kumar, A. (2020). Great Mind Maps For Learning Machine Learning.

Mahmud, M., Kaiser, M. S., Hussain, A., & Vassanelli, S. (2018). Applications Of Deep Learning And Reinforcement Learning To Biological Data. IEEE Transactions On Neural Networks And Learning System, 29(6), 2063-2079.

Nugroho, P. A., Fenriana, I., & Arijanto, R. (2020). Implementasi Deep Learning Menggunakan Convolutional Neural Network ( Cnn ) Pada Ekspresi Manusia. Jurnal Algor, Vol. 2 No. 1 (2020): Data And System, 12-21.

Nur Syahrudin, A., & Kurniawan, T. (2018). Input Dan Output Pada Bahasa Pemrograman Python. Jurnal Dasar Pemrograman Python STMIK.

Nurfita, R. D., & Ariyanto, G. (2018). Implementasi Deep Learning Berbasis Tensorflow Untuk Pengenalan Sidik Jari. Jurnal Teknik Elektro, Universitas Muhammadiyah Surakarta, 18(1), 22-27.

Prasetio, A., Hasibuan, M. H., & Sitompul, P. (2021). Implementasi Metode RELU, SIGMOID, MSE, Dan SGD Dalam Memprediksi Tingkat Pemahaman Siswa/I Pada Mata Pelajaran Pemrograman Di SMKS Mustafa Perbaungan. Jurnal Nasional Komputasi Dan Teknologi Informasi, Vol 4, No 3 (2021), 185-194.

Putra, J. W. (2020). Pengenalan Konsep Pembelajaran Mesin Dan Deep Learning (1.4 Ed.).

Qiang, W., & Zhongli, Z. (2011). Reinforcement Learning Model, Algorithms And Its Application. 2011 International Conference On Mechatronic Science, Electric Engineering And Computer (MEC), 1143-1146.

Rahman, S. E. (2021). Convolutional Neural Network Untuk Visi Komputer Jaringan Saraf Konvolusional Untuk Visi Komputer (Arsitektur Baru, Transfer Learning, Fine Tuning, Dan Pruning). Sleman, Yogyakarta: Deepublish.

Riadi, R. A. (2020, November 23). Mengenal Artificial Intelligence.

Roihan, A., Sunarya, P. A., & Rafika, A. S. (2020). Pemanfaatan Machine Learning Dalam Berbagai Bidang. IJCIT (Indonesian Journal On Computer And Information Technology), 5(1), 75-82.

Setiawan, W. (2020). Deep Learning Menggunakan Convolutional Neural Network: Teori Dan Aplikasi. Malang: Media Nusa Creative.

Shahriar, N. (2023). What Is Convolutional Neural Network — CNN (Deep Learning).

Shulur, S. P. (2015). Perancangan Aplikasi Deteksi Wajah Menggunakan Algoritma Viola-Jones.

Soni Putra, N. (2023). Implementasi Algoritma Convolutional Neural Network Untuk Identifikasi Jenis Kelamin Dan Ras Pda Citra Wajah. Universitas Jambi, Fakultas Sains Dan Teknologi, Jambi.

Downloads

Published

2023-03-14

How to Cite

Roid, A., & Maurits, I. (2023). HUMAN GENDER DETECTION SYSTEM BASED ON FACIAL IMAGE USING CONVOLUTIONAL NEURAL NETWORK ALGORITHM. International Journal Science and Technology, 2(1), 44–50. https://doi.org/10.56127/ijst.v2i1.847

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.