PEMETAAN DOMAIN PROSES, OUTCOME, DAN TATA KELOLA AI-ENABLED FINANCE TRANSFORMATION PADA CORPORATE FINANCE FUNCTION: SYSTEMATIC LITERATURE REVIEW

Authors

  • Sigit Sukmono Universitas Gunadarma

DOI:

https://doi.org/10.56127/jekma.v5i1.2560

Keywords:

transformasi fungsi keuangan, transformasi keuangan berbasis AI, otomasi cerdas, RPA, analitik prediktif, process mining, tata kelola AI

Abstract

Penelitian ini menyusun sintesis terstruktur tentang AI-enabled finance transformation pada corporate finance function karena literatur masih terfragmentasi lintas FP&A, record-to-report, pelaporan, audit/assurance, dan governance, sehingga temuan sering heterogen. Metode yang digunakan adalah systematic literature review (SLR) terhadap artikel peer-reviewed; data dikumpulkan melalui penelusuran basis data akademik dan snowballing, lalu diseleksi dengan deduplikasi, screening judul–abstrak, serta evaluasi full-text. Analisis dilakukan secara deskriptif dan tematik untuk memetakan rantai teknologi, perubahan proses/kerja, outcome & metrik, governance. Hasil menunjukkan konsentrasi studi pada proses yang paling terukur, terutama record-to-report dan internal audit/compliance, dengan perhatian pada FP&A/forecasting dan sistem pelaporan. Outcome yang paling konsisten adalah efisiensi dan kualitas/akurasi, sedangkan outcome strategis (decision support, business partnering) masih memakai proksi yang kurang seragam. Keberhasilan transformasi dipengaruhi fondasi data, kapasitas SDM, dan redesign proses, serta membutuhkan governance kuat (auditability, readiness data/process mining, bias/model risk). Implikasinya, OCFO perlu implementasi bertahap: quick wins pada proses terukur, penguatan data dan reskilling, serta tata kelola AI sejak awal. Orisinalitas penelitian ini adalah kerangka lintas-silo yang menghubungkan pilihan teknologi, perubahan proses, metrik outcome, dan governance untuk menjelaskan heterogenitas dampak AI pada fungsi keuangan.

References

Alassuli, A. (2025). Impact of artificial intelligence using the robotic process automation system on the efficiency of internal audit operations at Jordanian commercial banks. Banks and Bank Systems, 20(1), 122–136. doi:10.21511/bbs.20(1).2025.11.

Artene, A. E., Domil, A. E., & Ivascu, L. (2024). Unlocking business value: Integrating AI-driven decision-making in financial reporting systems. Electronics, 13(15), 3069. doi:10.3390/electronics13153069.

Bedford, D. S., Derichs, D., Hoozée, S., Malmi, T., Messner, M., Sinha, V. K., Van der Kolk, B., & Verbeeten, F. (2025). Digitalization of the finance function: Automation, analytics, and finance function effectiveness. Management Accounting Research, 67, 100942. doi:10.1016/j.mar.2025.100942.

Brock, J., Brennig, K., Löhr, B., Bartelheimer, C., Enzberg, S., & Dumitrescu, R. (2024). Improving process mining maturity – From intentions to actions. Business & Information Systems Engineering, 66(5), 585–605. doi:10.1007/s12599-024-00882-7.

Föhr, T. L., Reichelt, V., Marten, K.-U., & Eulerich, M. (2025). A framework for the structured implementation of process mining for audit tasks. International Journal of Accounting Information Systems, 56, 100727. doi:10.1016/j.accinf.2025.100727.

Gartner. (2024, September 11). Gartner survey shows 58% of finance functions using AI in 2024 [Press release].

Gartner. (2025, November 18). Gartner survey shows finance AI adoption remains steady in 2025 [Press release].

Gyau, E. B., Appiah, M., Gyamfi, B. A., Achie, T., & Naeem, M. A. (2024). Transforming banking: Examining the role of AI technology innovation in boosting banks financial performance. International Review of Financial Analysis, 96(Part B), 103700. doi:10.1016/j.irfa.2024.103700.

He, Y., Li, W., Tan, X., & Sun, Y. (2025). Economic policy uncertainty, digital transformation, and bank systemic risk. International Review of Economics & Finance, 102, 104309. doi:10.1016/j.iref.2025.104309.

L.E.K. Consulting. (2025, December 3). L.E.K. Consulting’s 2025 office of the CFO survey: A study of AI in the OCFO.

Lacmanović, S., & Škare, M. (2025). Artificial intelligence bias auditing – current approaches, challenges and lessons from practice. Review of Accounting and Finance, 24(3), 375–400. doi:10.1108/RAF-01-2025-0006.

Li, Y. (2025). Does digital transformation reduce proactive risk-taking in banks? Evidence from risk governance mechanisms in China. Journal of Financial Regulation and Compliance, 1–19. doi:10.1108/JFRC-05-2025-0140.

Perdana, A., Lee, W. E., & Kim, C. M. (2023). Prototyping and implementing robotic process automation in accounting firms: Benefits, challenges and opportunities to audit automation. International Journal of Accounting Information Systems, 51, 100641. doi:10.1016/j.accinf.2023.100641.

RGP. (2025, December 12). RGP CFO survey shows growing divide between AI ambition and AI readiness [Press release].

Resources Connection, Inc. (RGP). (2026). The AI foundational divide: From ambition to readiness [Report].

Remlein, M., & Nowak, D. (2025). Barriers to RPA implementation in accounting – Economic, technological, organizational, and social perspectives. Procedia Computer Science, 270, 4747–4757. doi:10.1016/j.procs.2025.09.600.

Wang, W., Wen, J., Liu, M., & Du, M. (2025). Can digital transformation reduce bank violations? Evidence from China. International Review of Economics & Finance, 104, 104707. doi:10.1016/j.iref.2025.104707.

Catatan singkat: sitasi “Sun et al., 2025” pada naskah yang Anda tulis paling cocok dirujukkan ke artikel He, Li, Tan, & Sun (2025) di International Review of Economics & Finance (karena “Sun” ada sebagai ko-autor).

Published

2026-02-02

How to Cite

Sigit Sukmono. (2026). PEMETAAN DOMAIN PROSES, OUTCOME, DAN TATA KELOLA AI-ENABLED FINANCE TRANSFORMATION PADA CORPORATE FINANCE FUNCTION: SYSTEMATIC LITERATURE REVIEW. Jurnal Ekonomi Dan Manajemen, 5(1), 61–70. https://doi.org/10.56127/jekma.v5i1.2560

Similar Articles

<< < 1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.