ANALISIS SENTIMEN OPINI PENGGUNA TWITTER PADA APLIKASI BIBIT MENGGUNAKAN MULTINOMIAL NAÏVE BAYES

Authors

  • Zelin Gaa Ngilo Universitas Gunadarma
  • Nuryuliani Nuryuliani Universitas Gunadarma

DOI:

https://doi.org/10.56127/jts.v2i1.521

Keywords:

sentiment analysis, bibit, lexicon based, multinomial naïve bayes, twitter

Abstract

The COVID-19 pandemic has increased the interest number of capital market investors in Indonesia. One of the factor in Indonesian’s investment interest is the emergence of fintech in the investment sector. One of the fintech companies in mutual fund investment is "Bibit". To find out user opinions on the Bibit application, a sentiment analysis was carried out on Twitter’s users. This study aims to analyze the sentiments of twitter users' opinions on the Bibit application using a combination of Lexicon-Based and Multinomial Naïve Bayes methods. The training data used were 2211 tweets and the validation data was 553 tweets. In the model training process, the training accuracy level is 91.50% and the validation accuracy rate is 85.35%. Model testing was carried out using 39 new tweet data and obtained an accuracy rate of 88%. Sentiment analysis using this method is visualized in the form of pie charts, graphs, and wordclouds. Based on the results of visualization of Twitter social media user sentiment towards the seedling application, it tends to be positive with a percentage of 52% positive and 48% negative.

References

KSEI Indonesia Central Securities Depository, “Statistik Pasar Modal Indonesia,” Feb. 2021. Accessed: Apr. 10, 2021. [Online]. Available: https://www.ksei.co.id/files/Statistik_Publik_Februari_2021.pdf

Bibit, “Gimana Sistem Kerja Fintech?,” Mar. 26, 2020. https://artikel.bibit.id/keuangan1/gimana-sistem-kerja-fintech (accessed Apr. 20, 2021).

Kompas.com, “Riset Ungkap Lebih dari Separuh Penduduk Indonesia ‘Melek’ Media Sosial,” Feb. 24, 2021. Accessed: Mar. 15, 2021. [Online]. Available: https://tekno.kompas.com/read/2021/02/24/08050027/riset-ungkap-lebih-dari-separuh-penduduk-indonesia-melek-media-sosial

E A Lisangan, A Gormantara, R Y Carolus, “Implementasi Naïve Bayes pada Analisis Sentimen Opini Masyarakat di Twitter terhadap Kondisi New Normal di Indonesia”, Konselasi: Konvergensi Teknologi dan Sistem Informasi, Vol.2 No.1, April 2022.

Aluisius Dwiki Adhi Putra, Safitri Juanita, “Analisis Sentimen pada Ulasan Pengguna Aplikasi Bibit dan Bareksa dengan Algoritma KNN”, Jurnal Teknik Informatika dan Sistem Informasi, Vol. 8, No. 2 Juni 2021.

M. Saraswati and D. Riminarsih, “ANALISIS SENTIMEN TERHADAP PELAYANAN KRL COMMUTERLINE BERDASARKAN DATA TWITTER MENGGUNAKAN ALGORTIMA BERNOULLI NAIVE BAYES,” Jurnal Ilmiah Informatika Komputer, vol. 25, no. 3, pp. 225–238, 2020, doi: 10.35760/ik.2020.v25i3.3256.

N. Iman, “Financial Technology dan Lembaga Keuangan,” Yogyakarta, Nov. 2016. Accessed: Sep. 06, 2022. [Online]. Available: http://nofieiman.com/wp-content/images/financial-technology-lembaga-keuangan.pdf

Bibit, “Apa Itu Robo Advisor,” Jul. 11, 2022. https://faq.bibit.id/id/article/apa-itu-robo-advisor-lop0vt/ (accessed Jul. 14, 2022).

Bibit, “Mengenal Bibit Investasi Reksadana Dan Cara Kerjanya,” Dec. 26, 2020. https://artikel.bibit.id/investasi1/mengenal-bibit-investasi-reksadana-dan-cara-kerjanya (accessed Mar. 10, 2021).

Twitter, “Pertanyaan Umum Pengguna Baru.” https://help.twitter.com/id/resources/new-user-faq (accessed Jun. 01, 2021).

Databoks, “Pengguna Twitter Indonesia Masuk Daftar Terbanyak di Dunia, Urutan Berapa?,” Mar. 23, 2022. https://databoks.katadata.co.id/datapublish/2022/03/23/pengguna-twitter-indonesia-masuk-daftar-terbanyak-di-dunia-urutan-berapa (accessed Jan. 25, 2022).

G. Isabelle, W. Maharani, and I. Asror, “Analysis on Opinion Mining Using Combining Lexicon-Based Method and Multinomial Naive Bayes,” Atlantis Highlights in Engineering, vol. 2, pp. 214–219, 2019.

F. Koto and G. Rahmaningtyas, “InSet (Indonesia Sentiment Lexicon),” Dec. 2017. https://github.com/fajri91/InSet (accessed Jul. 06, 2021).

N. Fitriyah, B. Warsito, D. Asih, and I. Maruddani, “ANALISIS SENTIMEN GOJEK PADA MEDIA SOSIAL TWITTER DENGAN KLASIFIKASI SUPPORT VECTOR MACHINE (SVM),” JURNAL GAUSSIAN, vol. 9, no. 3, pp. 376–390, 2020, Accessed: Jan. 07, 2022. [Online]. Available: https://ejournal3.undip.ac.id/index.php/gaussian/

Published

2023-02-06

How to Cite

Zelin Gaa Ngilo, & Nuryuliani Nuryuliani. (2023). ANALISIS SENTIMEN OPINI PENGGUNA TWITTER PADA APLIKASI BIBIT MENGGUNAKAN MULTINOMIAL NAÏVE BAYES. Jurnal Teknik Dan Science, 2(1), 08–15. https://doi.org/10.56127/jts.v2i1.521

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.