Morphological Image Techniques for Predictive Maintenance Detection
DOI:
https://doi.org/10.56127/juit.v4i2.1988Keywords:
Morphology, Image, DetectionAbstract
The advancement of modern manufacturing industry increases the need for fast, accurate, and efficient defect detection, especially in PCB (Printed Circuit Board) production. Image morphology techniques offer an effective solution by utilizing basic operations such as erosion, dilation, opening, and closing to extract important features and eliminate noise. This study discusses the application of morphology techniques to detect defects in PCBs as part of a predictive maintenance strategy. The process starts from image acquisition, pre-processing, segmentation, to feature extraction and defect classification using machine learning algorithms. The results show that the use of morphology techniques can improve the accuracy of defect detection and optimize product quality, while reducing manual inspection costs. This approach also allows early prediction of potential failures, thus supporting the improvement of system perfection and operational efficiency. In the future, further exploration of the combination of morphology techniques and learning systems is key to developing a more adaptive automatic inspection system for industrial needs.
References
Aboshosha, A., Haggag, A., George, N., & Hamad, H. A. (2023). IoT-based data-driven predictive maintenance relying on fuzzy system and artificial neural networks. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-38887-z
Adhinata, F. D., Wardhana, A. C., Rakhmadani, D. P., & Jayadi, A. (2020). Peningkatan Kualitas Citra pada Citra Digital Gelap. Jurnal E-Komtek (Elektro-Komputer-Teknik), 4(2), 136. https://doi.org/10.37339/e-komtek.v4i2.373
Amriana, A., Dodu, A. Y. E., & Mas, P. R. (2020). Pendeteksian Kerusakan Printer menggunakan Metode Forward Chaining. ILKOM Jurnal Ilmiah, 12(1), 47. https://doi.org/10.33096/ilkom.v12i1.523.47-57
Diers, J., & Pigorsch, C. (2023). A Survey of Methods for Automated Quality Control Based on Images. International Journal of Computer Vision, 131(10), 2553. https://doi.org/10.1007/s11263-023-01822-w
Febrianti, K. (2017). Segmentasi Citra Sel Sabit dengan Menggunakan Algoritma K-Nearest Neighbor Untuk Deteksi Penyakit Anemia. Jurnal Elektro Dan Mesin Terapan, 3(1), 11. https://doi.org/10.35143/elementer.v3i1.171
Fuady, S., Nehru, N., & Anggraeni, G. (2020). Deteksi Objek Menggunakan Metode Single Shot Multibox Detector Pada Alat Bantu Tongkat Tunanetra Berbasis Kamera. Journal of Electrical Power Control and Automation (JEPCA), 3(2), 39. https://doi.org/10.33087/jepca.v3i2.38
Gao, X., Zhao, C., Chang, G., & Tan, Z. (2009). Design and Implementation of Drill Hole of PCB Detection System. 462. https://doi.org/10.1109/his.2009.209
Hakim, N. N. (2020). Implementasi Machine Learning pada Sistem Prediksi Kejadian dan Lokasi Patah Rel Kereta Api di Indonesia. Jurnal Sistem Cerdas, 3(1), 25. https://doi.org/10.37396/jsc.v3i1.58
Hamidah, W., Irawan, T. S. B., Hasbullah, N. A. P., & Kaswar, A. B. (2022). Deteksi Nominal Uang Kertas Menggunakan OCR (Optical Character Recognition). Techno Xplore Jurnal Ilmu Komputer Dan Teknologi Informasi, 7(2), 72. https://doi.org/10.36805/technoxplore.v7i2.2123
Hatta, Moch., & Mahmudi, Moh. (2019). Penggunaan Algoritma Transformasi Hough Untuk Prototype Aplikasi Mobile Perhitungan Jumlah Pipa Pada Bagian Gudang PT SPINDO Tbk. Zenodo (CERN European Organization for Nuclear Research). https://doi.org/10.5281/zenodo.4301624
Khare, T., Bahel, V., & Phadke, A. C. (2020). PCB-Fire: Automated Classification and Fault Detection in PCB. 123. https://doi.org/10.1109/mpcit51588.2020.9350324
Kumar, A., & Harsha, S. P. (2024). A systematic literature review of defect detection in railways using machine vision-based inspection methods. International Journal of Transportation Science and Technology. https://doi.org/10.1016/j.ijtst.2024.06.006
Mangengre, S. (2019). IMPLEMENTASI METODE FAULT TREE ANALYSIS UNTUK ANALISIS KECACATAN PRODUK. Journal of Industrial Engineering Management, 4(1), 47. https://doi.org/10.33536/jiem.v4i1.288
Mohammed, K. M. C., Kumar, S. S., & Prasad, G. (2021). Defects Identification, Localization, and Classification Approaches: A Review [Review of Defects Identification, Localization, and Classification Approaches: A Review]. IETE Journal of Research, 69(7), 4323. Taylor & Francis. https://doi.org/10.1080/03772063.2021.1958073
Nugraha, E., & Sari, R. M. (2019). Analisis Defect dengan Metode Fault Tree Analysis dan Failure Mode Effect Analysis. Organum Jurnal Saintifik Manajemen Dan Akuntansi, 2(2), 62. https://doi.org/10.35138/organum.v2i2.58
Qin, L., & Isa, N. A. M. (2023). Printed Circuit Board Defect Detection Methods Based on Image Processing, Machine Learning and Deep Learning: A Survey. IEEE Access, 11, 15921. https://doi.org/10.1109/access.2023.3245093
Rahmannuri, H. (2019). Pengaruh Perbedaan Intensitas Pencahayaan Terhadap Identifikasi Objek Gerak. Jurnal Sistem Informasi Dan Bisnis Cerdas, 12(2). https://doi.org/10.33005/sibc.v12i2.1569
Realyvásquez-Vargas, A., Arredondo-Soto, K. C., Carrillo-Gutiérrez, T., & Ravelo, G. (2018). Applying the Plan-Do-Check-Act (PDCA) Cycle to Reduce the Defects in the Manufacturing Industry. A Case Study. Applied Sciences, 8(11), 2181. https://doi.org/10.3390/app8112181
Riantama, G. N. S., Piarsa, I. N., & Sasmita, G. M. A. (2019). Pengaruh Segmentasi Terhadap Hasil Rotasi Citra Menggunakan Metode Minimum Area Rectangle. Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi), 95. https://doi.org/10.24843/jim.2019.v07.i02.p01
Suryanto, D. (2020). Analisis Perawatan Ac (Air Conditioner) Unit Split Duct Menggunakan Metode Failure Mode And Effect Analysis Fmea Di Hotel Harris Yello. JITMI (Jurnal Ilmiah Teknik Dan Manajemen Industri), 3(1), 67. https://doi.org/10.32493/jitmi.v3i1.y2020.p67-75
Tang, R., Donato, L. D., Bešinović, N., Flammini, F., Goverde, R. M. P., Lin, Z., Liu, R., Tang, T., Vittorini, V., & Wang, Z. (2022). A literature review of Artificial Intelligence applications in railway systems [Review of A literature review of Artificial Intelligence applications in railway systems]. Transportation Research Part C Emerging Technologies, 140, 103679. Elsevier BV. https://doi.org/10.1016/j.trc.2022.103679
Tibyani, Hayati, N., Sutrisno, I., Khumaidi, A., Rahman, Md. A., Gumelar, F. M., Dhipanusa, K., Filemon, & Supriyanto, E. (2021). Design of printed circuit board detection with image information technology. IOP Conference Series Materials Science and Engineering, 1175(1), 12011. https://doi.org/10.1088/1757-899x/1175/1/012011
Wijayono, A., & Putra, V. G. V. (2018). Implementation Of Image Analysis Techniques For Various Textile Identification. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1810.06423
Xie, H., & Wu, Z. (2020). A Robust Fabric Defect Detection Method Based on Improved RefineDet. Sensors, 20(15), 4260. https://doi.org/10.3390/s20154260
Yang, J., Li, S., Wang, Z., Dong, H., Wang, J., & Tang, S. (2020). Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive Survey and Current Challenges [Review of Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive Survey and Current Challenges]. Materials, 13(24), 5755. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/ma13245755
Zhang, H., Wang, D., Chen, Z., & Pan, R. (2023). Adaptive visual detection of industrial product defects. PeerJ Computer Science, 9. https://doi.org/10.7717/peerj-cs.1264
Zhang, Y., Xie, F., Huang, L., Shi, J., Yang, J., & Li, Z. (2021). A Lightweight One-Stage Defect Detection Network for Small Object Based on Dual Attention Mechanism and PAFPN. Frontiers in Physics, 9. https://doi.org/10.3389/fphy.2021.708097