Analysis of Tensile Strength of Carbon Fiber and E-Glass Sandwich Composite Materials with Balsa Wood Core Based on Polyester
DOI:
https://doi.org/10.56127/juit.v4i3.2291Abstract
Sandwich composite is a type of structural composite material composed of two outer layers (skins) and a core material in the middle. There are various definitions of sandwich composites, but a key factor is the lightweight core, which reduces the material's specific weight, coupled with the rigidity of the skin layers that provide strength to the sandwich composite. This research aims to determine the tensile strength of carbon fiber and glass fiber sandwich composite materials with fiber orientations at 0°, ±45°, and (0,90)°, using a 3 mm thick core. The matrix used is polyester Yukalac 2250 BW-EX. Tensile testing is conducted following ASTM D3039 standards. Based on the tensile test results, the highest tensile strength is observed in the carbon-balsa/polyester sandwich composite with a 0° fiber orientation, achieving an average tensile strength of 152.71 MPa. On the other hand, the lowest tensile strength is found in the e-glass-balsa/polyester sandwich composite with a ±45° fiber orientation, with an average tensile strength of 12.34 MPa.
References
Antwi, M. O., Castro de, J., Vassilopoulos, A. P., & Keller, T. (2014). Analytical modelling of local stresses at balsa/timber core joints of FRP sandwich structures. Composite Structures. Elsevier. https://doi.org/10.1016/j.compstruct.2014.05.050
Banowati, L., Haj, R., & Sartono, J. (2022). Analisis Kekuatan Tarik Carbon/Epoksi Vs E-Glass/Epoksi Dan Kekuatan Bending Komposit Sandwich. Conference SENATIK STT Adisutjipto Yogyakarta. DOI: http://dx.doi.org/10.28989/senatik.v7i0.473
Banowati, L., Yudhistira, M., & Hartopo, H. (2022). Analisis Perbandingan Kekuatan Komposit Hybrid Sandwich Serat Rami-E-Glass/Epoxy Berdasarkan Variasi Ketebalan Core Kayu Balsa Terhadap Kemampuan Uji Bending. Conference SENATIK STT Adisutjipto Yogyakarta. DOI: 10.28989/senatik.v7i0.465
Galos, D., Das, R., & Sutcliffe, M. P. (2022). Review of balsa core sandwich composite structures. Materials & Design, 221, 111013. DOI: 10.1016/j.matdes.2022.111013
Jones, R. M. (2025). Mechanics of Composite Materials. Virginia, USA.
Li, J. H., Hunt, J. F., Gong, S. Q., & Cai, Z. Y. (2014). High strength wood-based sandwich panels reinforced with fiberglass and foam. BioResources, 9(2), 1898-1913. DOI: 10.15376/biores.9.2.1898-1913
Mallick, P. K. (2007). Fiber Reinforced Composites: Materials, Manufacturing and Design. CRC Press, Michigan.
Mohammadi, M. S., & Nairn, J. A. (2013). Crack propagation and fracture toughness of solid balsa used for cores of sandwich composites. Journal of Sandwich Structures and Materials, 16, 22-4. DOI: 10.1177/1099636213502980
Ngo, T. D. (2020). Composite and Nanocomposite Materials – From Knowledge to Industrial Applications. InnoTech Alberta-Alberta Innovates, Canada. DOI: 10.5772/intechopen.91285
Widodo, E., & Iswanto, I. (2022). Buku Ajar Mekanika Komposit dan Bio-Komposit. Umsida Press. ISBN: 9786234640427. DOI: 10.21070/2022/978-623-464-042-7
Zaharia, S. M., Morariu, C. O., Nedeicu, A., & Pop, M. A. (2017). Experimental study of static and fatigue behavior of CFRP-balsa sandwiches under three-point flexural loading. BioResources, 12(2), 2673-2689. DOI: 10.15376/biores.12.2.2673-2689














