Obesity Prediction with Classification Model Based on Anthropometric Data and Lifestyle Factors using Random Forest

Authors

  • Rizky Adha Hardiman Universitas Gunadarma
  • Ari Rosemalatriasari Gunadarma University

DOI:

https://doi.org/10.56127/juit.v4i2.2084

Keywords:

Machine Learning, Model, Algoritma Random Forest, Dataset, Klasifikasi, Prediksi

Abstract

Overweight and obesity have become a significant health problem worldwide, including in Indonesia. This study aims to solve this problem by developing a machine learning model based on the Random Forest Classifier algorithm. This model can be used to classify various types of obesity based on relevant variables. This study uses data from the trusted Kaggle data source to find and manage community problems with obesity and overweight. The machine learning approach allows this model to predict obesity types with high accuracy, exceeding 90%. The advantage of this approach is that it can create solutions based on a person's gender, age, weight, and height, as well as other relevant factors

References

A, B., M, Z., & R, S. (2013). Python To Learn Programming. Journal Of Physics: Conference Series, 1-5.

A. B. Putri And A. Makmun, “Diet Patterns Against Obesity,”Indonesia. J. Heal., Vol. Xx, No. Xx, Pp. 68–76, 2021, Doi:10.33368/Inajoh.V2i1.39.

Annurullah, Gifta Alifa, Maulyda Shakeela Jasmine, Nandita Ardrafitri Saraswati, And Yabsutur Rizka. 2021. “Risk Factors Of Obesity In Office Workers: A Systematic Review.”Tambusai Health Journal 2(2): 80–88.

Banjarnahor, R. O., Banurea, F. F., Panjaitan, J. O., Pasaribu, R. S., & Hafni, I. (2019). Risk Factors For Overweight And Obesity In .Trophico: Tropical Public Health Journal Faculty Of Public Health, 35-45.

Cholossodin, I., Sutrisno, Soebroto, A. A., Hasanah, U., & Febiola, Y. I. (2019).Ai, Machine Learning & Deep Learning (Theory & Implementation).Poor.

Cutler, A., Cao, X., Polat, K., & Zhang, J. (2020). Confusion Matrix. Retrieved From Science Direct: Https://Www.Sciencedirect.Com/Topics/Engineering/Confusion-Matrix

Dinata, R. K., & Hasdyna, N. (2020).Machine Learning. English: Oxford University Press.

D. Alfora, E. Saori, And L. N. Fajriah, “The Effect Of Fast Food Consumption On Adolescent Nutrition,”Florona J. Health Science., Vol. 2, No. 1, Pp. 43–49, 2023, Doi: 10.55904/Florona.V2i1.688.

D. I. Nutrition, F. Medicine, And U. Diponegoro, “Snack Energy Intake, Sleep Duration And Quality In Obesity And Non-Obesity Adolescents,” Vol. 7, No. 2010, Pp. 147–154, 2018.

E. Yuniarti, “The Relationship Between Vegetable And Fruit Consumption And Adolescent Obesity In Padang City,”J. Healthy Independent, Vol. 18, No. 1, Pp. 137–145, 2023, Doi: 10.33761/Jsm.V18i1.974.

Elwirehardja, G. N., Suparyanto, T., & Pardamean, B. (2022).Introduction To Machine Learning Concepts. Yogyakarta: Instiper Press.

Gartler, M., Khaydarov, V., Klopper, B., & Urbas, L. (2021). The Machine Learning Life Cycle In Chemicaloperations – Status And Open Challenges. 18.

Ministry Of Health Of The Republic Of Indonesia. (2018, 2).Obesity Epidemic.Retrieved From Ministry Of Health:

Https://P2ptm.Kemkes.Go.Id/Uploads/N2vaaxixzgzwwfpel1vlrfdqq3 Zrzz09/2018/02/Factsheet_Obesitas_Kit_Informasi_Obesitas.Pdf

Ministry Of Health Of The Republic Of Indonesia. (2021, 7 1).How To Measure Body Mass Index (Bmi) / Normal Body Weight?Retrieved From Ministry Of Health: Https://P2ptm.Kemkes.Go.Id/Infographic- P2ptm/Obesitas/Bagaimana-Cara-Mengukur-Indeks-Massa-Tubuh-Imt-Berat- Badan-Normal

Luo, T., Chen, S., Xu, G., & Zhou, J. (2013).Trust-Based Collection View Prediction.New York: Springer Science+Business Media.

Mu'alim, F., & Hidayati, R. (2022). Implementation Of The Methodrandom Forest For Majoring.Jupiter, 116-125.

Muhamad, I. M., Wardana, S. A., Wanto, A., & Windarto, A. P. (2022). Machine Learning Algorithm For Determining Production Prediction Models.Journal Of Informatics, Electrical And Electronics Engineering, 126-134.

Mulia, S. (2022, 8 31).Getting To Know Matplotlib For Data Visualization, Check Out Explanation Following This! Retrieved From Idmetaphor: Https://Idmetafora.Com/News/Read/1254/Mengenal-Matplotlib-Untuk- Do-Visualisasi-Data-Simak-Penjelasan-Berikut-Ini.Html

Nugroho, Y. S., & Emiliyawati, N. (2017). Springer Science+Business Media. Journal Of Electrical Engineering, 24-29.

Puji, A. (2023, 7 10).Formula For Measuring Body Mass Index (Bmi) In Adults. Retrieved From Hellosehat: Https://Hellosehat.Com/Nutrisi/Cara-Hitung-Indeks-Massa-Tubuh/

Ramadhan, A., & Susetyo, B. (2019). Application Of Classification Methodsrandom Forest In Identifying Important Factors In Assessing The Quality Of Education.Journal Of Education And Culture, 169-182.

Roihan, A., Sunarya, P. A., & Rafika, S. A. (2019). Utilization Of Machine Learning In Various Fields: .Ijcit (Indonesian Journal On Computer And Information Technology), 75-82.

Septiani, R., & Raharjo, B. B. (2017). Fast Food Consumption Patterns, Physical Activity And Hereditary Factors On The Incidence Of .Public Health Perspective, 262- 269.

Siswoyo, B., Encep, & Firman. (2019). Machine Learning Bankruptcy Prediction.Informatics Buffer Journal, 8-15.

Trehan, D. (2023, 7 2). Why Choose Random Forest And Not Decision Trees. Retrieved From Towardsai: Https://Towardsai.Net/P/Machine-Learning/Why- Choose-Random-Forest-And-Not-Decision-Trees

Wuryani, N., & Agustiani, S. (2021).Random Forest Classifierfor Ct Scan Image-Based Covid-19 Sufferer Detection.Journal Of Computer Engineering Amik Bsi, 187-193.

Downloads

Published

2025-06-16

How to Cite

Rizky Adha Hardiman, & Ari Rosemalatriasari. (2025). Obesity Prediction with Classification Model Based on Anthropometric Data and Lifestyle Factors using Random Forest. Jurnal Ilmiah Teknik, 4(2), 123–144. https://doi.org/10.56127/juit.v4i2.2084

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.