Rupiah Banknote Classification Using MobileNetV2 Based on Image Data

Authors

  • Aditya Rizky Fajriansyah Gunadarma University
  • Dina Agusten Gunadarma University
  • Sri Rahayu Puspita Sari Gunadarma University
  • Fauziah Gunadarma University
  • Yuli Fitriyani Gunadarma University
  • Mariza Wijayanti Gunadarma University

DOI:

https://doi.org/10.56127/juit.v5i1.2461

Keywords:

Android, Flutter, Image Classification, MobileNetV2, Visually Impaired Users

Abstract

Visually impaired individuals often struggle to independently identify Indonesian rupiah denominations because banknotes share similar colors, patterns, and layouts, increasing the risk of errors during cash transactions. Purpose: This study aims to develop an offline, image-based banknote denomination recognition system on Android that can provide accessible assistance without relying on internet connectivity. Methodology: A quantitative experimental design was applied using a dataset of 4,340 banknote images covering 14 classes (seven denominations with front and back sides). The classifier was built with MobileNetV2 using transfer learning, supported by data augmentation and hyperparameter optimization, and evaluated using validation accuracy and F1-score. The trained model was converted to TensorFlow Lite and integrated into a Flutter-based Android application with text-to-speech output for user assistance. Findings: The proposed model achieved 96.20% validation accuracy with an average F1-score of 0.95, indicating strong performance for lightweight on-device inference. Implications: The system can be deployed in real time on smartphones to support inclusive and safer cash handling for visually impaired users, and it demonstrates the feasibility of offline deep learning for accessible financial technology. Originality: This study provides an end-to-end offline solution for Indonesian rupiah recognition that combines a lightweight deep learning model, on-device deployment, and text-to-speech feedback while distinguishing both sides of multiple denominations, offering practical value beyond approaches that depend on cloud inference or limited class coverage.

 

References

Abdillah, S. P. N. (2024). Perancangan Aplikasi Website Sistem Informasi Alumni Menggunakan PHPRad. Indonesian Journal of Computer Science. https://doi.org/10.33022/ijcs.v13i1.3657

Aji, N. B. et al. (2025). Application of MobileNetV2-Based Deep Learning in Detecting Diseases in Chili Plants. Journal of Informatics, Information System, Software Engineering and Applications (INISTA), 7(2), 203–212. https://doi.org/10.20895/INISTA.V7I2.1825

Akbar, R. et al. (2021). Penerapan Aplikasi Berbasis Web Untuk Monitoring Pengobatan Pasien Gangguan Jiwa Pada UPT Puskesmas Pasar Usang. Jurnal Nasional Teknologi Dan Sistem Informasi. https://doi.org/10.25077/teknosi.v7i3.2021.130-137

Al Ghani, A. I., & Andrian, R. (2023). Pengembangan Presensee: Aplikasi Presensi Mahasiswa Mobile Menggunakan Framework Flutter (Studi Kasus: Studi Independen Alterra Academy. Jurnal Media Infotama, 19(2), 447–453. https://doi.org/10.37676/jmi.v19i2.4351

Andrianto, F. et al. (2024). Linear Kernel Optimization of Support Vector Machine Algorithm on Online Marketplace Sentiment Analysis. Komputasi: Jurnal Ilmiah Ilmu Komputer Dan Matematika, 21(1), 68–82. https://doi.org/10.33751/komputasi.v21i1.9266

Azunre, P. (2021). Transfer Learning for Natural Language Processing. Manning.

Chollet, F. (2021). Deep Learning with Python. Manning.

Faruq, F., & Harahap, L. S. (2024). Analisis Sentimen Ulasan Aplikasi Be My Eyes Menggunakan Data Orange Mining. Jurnal Multidisiplin Saintek, 5(Table 10), 4–6.

Ghosh, A. et al. (2019). Fundamental concepts of convolutional neural network. In Intelligent Systems Reference Library (Vol. 172). https://doi.org/10.1007/978-3-030-32644-9_36

Hossain, A., & Sajib, S. A. (2019). Classification of Image using Convolutional Neural Network (CNN). Global Journal of Computer Science and Technology, 19(2). https://doi.org/10.34257/GJCSTDVOL19IS2PG13

Indonesia, B. (2022). Uang rupiah kertas emisi 2022. Bank Indonesia. https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/uang-rupiah/Contents/Default.aspx

Lakshmanan, V. et al. (2021). Practical Machine Learning for Computer Vision: End-to-End Machine Learning for Images. O’Reilly Media, Inc.

McAuley, J. (2021). Personalized Machine Learning. In CAMBRIDGE UNIVERSITY PRESS. https://doi.org/10.1017/9781009003971

Muchlis, A. et al. (2025). The Effect Of Data Augmentation On Accuracy Values In Fabric Defect Detection. Revista de Gestão Social e Ambiental, 19(3), 1–17. https://doi.org/10.24857/rgsa.v19n3-048

Mulyana, D. I., & Akbar, A. (2022). Optimasi Klasifikasi Batik Betawi Menggunakan Data Augmentasi Dengan Metode KNN dan GLCM. Jurnal Aplikasi Teknologi Informasi Dan Manajemen (JATIM), 3(2), 92–101. https://doi.org/10.31102/jatim.v3i2.1577

Novac, O. C. et al. (2022). Analysis of the Application Efficiency of TensorFlow and PyTorch in Convolutional Neural Network. Sensors, 22(22), 1–23. https://doi.org/10.3390/s22228872

Palanivinayagam, A. et al. (2023). Twenty Years of Machine-Learning-Based Text Classification: A Systematic Review. Algorithms, 16(5). https://doi.org/10.3390/a16050236

Prayogi, N. (2023). Aplikasi Presensi Kegiatan Menggunakan QR Code Dan Digital Signature Pada Dinas Kominfo Kabupaten Gresik. Jurnal Teknologi Dan Informasi. https://doi.org/10.34010/jati.v13i2.9432

Sandler, M. et al. (2018). MobileNetV2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4510–4520). https://doi.org/10.1109/CVPR.2018.00474

Saprudin et al. (2021). Klasifikasi Citra Menggunakan Metode Random Forest dan Sequential Minimal Optimization (SMO). Jurnal Sistem Dan Teknologi Informasi (Justin), 9(2), 132. https://doi.org/10.26418/justin.v9i2.44120

Suhendro, J. M. et al. (2021). Rancang Bangun Aplikasi Seluler Penyedia Jasa Perawatan dan Kecantikan Menggunakan Framework Flutter. Jurnal Spektrum, 8(2), 68–82.

Warden, P., & Situnayake, D. (2020). Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers. In O’Reilly Media. O’Reilly Media.

Zakaria, P. A. L. et al. (2023). Pengenalan Nilai Mata Uang Kertas Untuk Tunanetra Berbasis Android. Jurnal Sintaks Logika, 3(3), 40–44. https://doi.org/10.31850/jsilog.v3i3.2587

Zhou, H. (2022). Research of Text Classification Based on TF-IDF and CNN-LSTM. Journal of Physics: Conference Series, 2171(1), 1–9. https://doi.org/10.1088/1742-6596/2171/1/012021

Downloads

Published

2026-01-13

How to Cite

Aditya Rizky Fajriansyah, Dina Agusten, Sri Rahayu Puspita Sari, Fauziah, Yuli Fitriyani, & Mariza Wijayanti. (2026). Rupiah Banknote Classification Using MobileNetV2 Based on Image Data. Jurnal Ilmiah Teknik, 5(1), 98–113. https://doi.org/10.56127/juit.v5i1.2461

Similar Articles

<< < 1 2 3 > >> 

You may also start an advanced similarity search for this article.