Course Selection Pattern Analysis Using Apriori Algorithm
DOI:
https://doi.org/10.56127/juit.v4i3.2326Keywords:
Data mining, Association Rule, Apriori, FP Growth, WekaAbstract
This research discusses Association Rules as one of the data mining functions implemented using the Apriori Algorithm. The Institute for Computerization Development (LePKom) is a unit at Gunadarma University that organizes courses and workshops. The course and workshop participants are Gunadarma University students from the following undergraduate and diploma programs: Bachelor of Information Systems (S1-SI), Bachelor of Computer Systems (S1-SK), Diploma in Information Management (D3-MI), Diploma in Computer Engineering (D3-TK), and Bachelor of Informatics Engineering (S1-TI). New students must select three course topics from the six fundamental courses available at the Institute for Computerization Development (LePKom), and from these three choices, students will be assigned one course each semester. Association rules can be generated using the Apriori Algorithm to identify patterns of which course topics are most frequently selected together by new students each semester, as well as to optimize course infrastructure requirements.
References
Al-Refaie, A., Abu Hamdieh, B., & Lepkova, N. (2023). Prediction of Maintenance Activities Using Generalized Sequential Pattern and Association Rules in Data Mining. Buildings, 13(4). https://doi.org/10.3390/buildings13040946
Chee, C. H., Jaafar, J., Aziz, I. A., Hasan, M. H., & Yeoh, W. (2019). Algorithms for frequent itemset mining: a literature review. In Artificial Intelligence Review (Vol. 52, Issue 4). https://doi.org/10.1007/s10462-018-9629-z
Fey, F. P. (2023). Application of the Apriori Algorithm to Purchase Patterns. The Indonesian Journal of Computer Science, 12(2). https://doi.org/10.33022/ijcs.v12i2.3105
Harianto, H., Sudianto, A., & Bahtiar, H. (2023). Analisa Data Transaksi Penjualan Barang Menggunakan Algoritma Apriori Dan FP-Growth. Jurnal SISKOM-KB (Sistem Komputer Dan Kecerdasan Buatan), 6(2). https://doi.org/10.47970/siskom-kb.v6i2.371
Idris, A. I., Sampetoding, E. A. M., Ardhana, V. Y. P., Maritsa, I., Sakri, A., Ruslan, H., & Manapa, E. S. (2022). Comparison of Apriori, Apriori-TID and FP-Growth Algorithms in Market Basket Analysis at Grocery Stores. The IJICS (International Journal of Informatics and Computer Science), 6(2). https://doi.org/10.30865/ijics.v6i2.4535
Jang, H. J., Yang, Y., Park, J. S., & Kim, B. (2021). Fp-growth algorithm for discovering region-based association rule in the iot environment. Electronics (Switzerland), 10(24). https://doi.org/10.3390/electronics10243091
Lv, Z., Chen, D., & Lv, H. (2022). Smart City Construction and Management by Digital Twins and BIM Big Data in COVID-19 Scenario. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 18(2). https://doi.org/10.1145/3529395
Mitici, M., de Pater, I., Barros, A., & Zeng, Z. (2023). Dynamic predictive maintenance for multiple components using data-driven probabilistic RUL prognostics: The case of turbofan engines. Reliability Engineering & System Safety, 234, 109199. https://doi.org/10.1016/J.RESS.2023.109199
Samboteng, L., Rulinawaty, Kasmad, M. R., Basit, M., & Rahim, R. (2022). MARKET BASKET ANALYSIS OF ADMINISTRATIVE PATTERNS DATA OF CONSUMER PURCHASES USING DATA MINING TECHNOLOGY. Journal of Applied Engineering Science, 20(2). https://doi.org/10.5937/jaes0-32019
Suo, Y., Ji, Y., Zhang, Z., Chen, J., & Claramunt, C. (2022). A Formal and Visual Data-Mining Model for Complex Ship Behaviors and Patterns. Sensors, 22(14). https://doi.org/10.3390/s22145281
Yang, J., Bian, X., Qi, Y., Wang, X., Yang, Z., & Liu, J. (2024). A spatial-temporal data mining method for the extraction of vessel traffic patterns using AIS data. Ocean Engineering, 293. https://doi.org/10.1016/j.oceaneng.2023.116454
Zhang, H., Luo, G., Li, J., & Wang, F. Y. (2022). C2FDA: Coarse-to-Fine Domain Adaptation for Traffic Object Detection. IEEE Transactions on Intelligent Transportation Systems, 23(8), 12633–12647. https://doi.org/10.1109/TITS.2021.3115823
Zhang, Y., Huang, Y., Zhang, Z., Postolache, O., & Mi, C. (2023). A vision-based container position measuring system for ARMG. Measurement and Control, 56(3–4), 596–605. https://doi.org/10.1177/00202940221110932














